Line 98: | Line 98: | ||
</p> | </p> | ||
<p> | <p> | ||
− | As a first proof of principle we measure a time trace of Cas13a digesting RNaseAlert with our detector. RNaseAlert is a commercially available beacon consisting of a reporter fluorophore and quencher connected by | + | As a first proof of principle we measure a time trace of Cas13a digesting RNaseAlert with our detector. RNaseAlert is a commercially available fluorescent beacon consisting of a reporter fluorophore and quencher connected by an RNA-linker, bringing them in close proximity. While in the intact state, the fluorophore is quenched, cleavage of the RNA-linker separates the two labels and restores fluorescence. For comparison, we also measured a time trace of the highly active RNaseA digesting RNaseAlert and a time trace of a sample containing only RNaseAlert. The time traces measured with our detector are shown in the figure below. |
</p> | </p> | ||
<div class="captionPicture"> | <div class="captionPicture"> | ||
Line 112: | Line 112: | ||
</p> | </p> | ||
<p> | <p> | ||
− | A detailed description, including derivations of all equations and all necessary information to rebuild our detector can be found on our <a class="myLink" href = "https://2017.igem.org/Team:Munich/Hardware/Detector"> hardware page</a>. | + | A detailed description, including derivations of all equations and all necessary information to rebuild our detector can be found on our <a class="myLink" href = "https://2017.igem.org/Team:Munich/Hardware/Detector"> hardware page</a>. Here we provide a brief description of the functionality of our detector and a summary of all equations needed to process and analyse data with our detector. |
</p> | </p> | ||
</div> | </div> | ||
Line 127: | Line 127: | ||
<h3>Framework of Equations for Calibration and Data Analysis</h3> | <h3>Framework of Equations for Calibration and Data Analysis</h3> | ||
<p> | <p> | ||
− | An Arduino Nano can measure voltages in integers from 0 to 1023. To measure <i>R<sub>LDR</sub></i> we use a voltage | + | An Arduino Nano can measure voltages in integers from 0 to 1023. To measure <i>R<sub>LDR</sub></i> we use a voltage divider to translate the voltage drop <i>U<sub>LDR</sub></i> at <i>R<sub>LDR</sub></i> via |
</p> | </p> | ||
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/3/3f/T--Munich--Hardware_equation6.png"><span>(1)</span></div> | <div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/3/3f/T--Munich--Hardware_equation6.png"><span>(1)</span></div> | ||
Line 137: | Line 137: | ||
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/d/d8/T--Munich--Hardware_equation20.png"><span>(3)</span></div> | <div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/d/d8/T--Munich--Hardware_equation20.png"><span>(3)</span></div> | ||
<p id ="measurementequation4"> | <p id ="measurementequation4"> | ||
− | To calibrate our detector, we measured <i>R<sub>LDR</sub></i> for 10-fold dilutions of fluorescein from 100 nM to 1 mM. We derived an equation to fit the | + | To calibrate our detector, we measured <i>R<sub>LDR</sub></i> for 10-fold dilutions of fluorescein from 100 nM to 1 mM. We derived an equation to fit the resistances <i>R<sub>LDR</sub></i> |
</p> | </p> | ||
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/f/f7/T--Munich--Hardware_equation16.png"><span>(4)</span></div> | <div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/f/f7/T--Munich--Hardware_equation16.png"><span>(4)</span></div> | ||
<p> | <p> | ||
where <i>R<sub>b</sub></i> is the resistance measured for plain water, <i>γ</i> is a parameter depending on the type of LDR used and <i>c</i> is the fluorescein concentration. <i>k</i> is the fit parameter and is a constant for a measurement set up. | where <i>R<sub>b</sub></i> is the resistance measured for plain water, <i>γ</i> is a parameter depending on the type of LDR used and <i>c</i> is the fluorescein concentration. <i>k</i> is the fit parameter and is a constant for a measurement set up. | ||
− | Fitting the data for <i>γ</i> = 0.8 gives | + | Fitting the data for our setup using <i>γ</i> = 0.8 gives |
</p> | </p> | ||
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/d/d4/T--Munich--Hardware_equation17.png"><span>(5)</span></div> | <div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/d/d4/T--Munich--Hardware_equation17.png"><span>(5)</span></div> | ||
<p> | <p> | ||
− | The | + | The calibration is shown in the figure below. |
</p> | </p> | ||
<div class="captionPicture"> | <div class="captionPicture"> | ||
<img src="https://static.igem.org/mediawiki/2017/5/57/T--Munich--Hardware_calibrier.png"> | <img src="https://static.igem.org/mediawiki/2017/5/57/T--Munich--Hardware_calibrier.png"> | ||
<p> | <p> | ||
− | Normalized resistances <i>R<sub>LDR</sub></i>/<i>R<sub>b</sub></i> vs fluorescein concentration | + | Normalized resistances <i>R<sub>LDR</sub></i>/<i>R<sub>b</sub></i> vs. fluorescein concentration |
<i>c</i> and corresponding fit function. | <i>c</i> and corresponding fit function. | ||
</p> | </p> | ||
</div> | </div> | ||
<p> | <p> | ||
− | We are now able to measure fluorescence in equivalent fluorescein concentrations <i>c</i>. <a href="#measurementequation4">Equation 4</a> solved for <i>c</i> | + | We are now able to measure fluorescence in equivalent fluorescein concentrations <i>c</i>. <a href="#measurementequation4">Equation 4,</a> solved for <i>c</i> gives |
</p> | </p> | ||
<div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/a/a3/T--Munich--Hardware_equation21.png"><span>(6)</span></div> | <div class="equationDiv"><img class="largeEquation" src="https://static.igem.org/mediawiki/2017/a/a3/T--Munich--Hardware_equation21.png"><span>(6)</span></div> |
Revision as of 18:47, 28 October 2017
| |||||||||||||||||||||||||||||||||||||||||||||
|