Difference between revisions of "Team:TokyoTech/Experiment/TraI Assay"

Line 62: Line 62:
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p style="font-family: Poppins;font-size: 16px">
 
     <p style="font-family: Poppins;font-size: 16px">
In this section we confirmed that E.coli containing Trail genes (we call it Seder E.coli) truly produce signal molecule, AHL(Acyl Homoserine Lactone).
+
Quorum Sensing is cell-to-cell communication system which is used variety of microorganism. Signal molecular used in Quorum sensing has variety of chemical structure. LuxI is 合成遺伝子 of 3OC6AHL and TraI is 合成遺伝子 of 3OC8AHL. Chemical structures of these molecule are shown Figure. 1. LuxR gene express intracellular LuxR receptor. Signal molecular and this receptor form complex. This complex interacts with responsive promoters, Plux and regulates transcription of downstream genes. The concentration of signal molecular increase with cell density. By using this system, microorganism assess their local density and regulates gene expression.<br>
At first to detect small amount of AHL we made reporter E.coli which respond to AHL and produce GFP. Then we studied AHL concentration dependence of reporter’s fluorescent intensity.
+
In previous study, a novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR was developed. In this system, transcription  downstream of a region called CMV minimal promoter is induced in the presence of signal molecular 3OC8AHL. Therefore, we chose 3OC8AHL as signal molecule and tried to make E.coli to produce 3OC8AHL.
At last, we mix supernatant of Sender E.coli media with culture in which reporter grow and measure intensity of fluorescence and confirmed E.coli produce AHL.
+
  
 
     </p>
 
     </p>
 
   </div>
 
   </div>
 +
<hr>
 +
 
<div class="w3-container" id="overview" style="margin-top:20px"><!-- この箱の中にテキストや画像をまとめる -->
 
<div class="w3-container" id="overview" style="margin-top:20px"><!-- この箱の中にテキストや画像をまとめる -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Summary of experiment</b></h1><!-- 小見出し -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Summary of experiment</b></h1><!-- 小見出し -->
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p style="font-family: Poppins;font-size: 16px">
 
     <p style="font-family: Poppins;font-size: 16px">
We use following plasmids and induced into E.coli.
+
In this section, we confirmed whether E. coli expressing Tral protein  truly produced signal molecules, AHL (Acyl Homoserine Lactone). <br>
LuxR and Plux is Lux system Receptor and Promorter.
+
To achieve this goal, we constructed two types of E. coli. One is the “Sender” E. coli which produces AHL and the other is the “Reporter” E. coli which expresses GFP in the presence of AHL.<br>
 +
To begin with, we evaluated whether “Reporter” cell could express GFP dependent on AHL by culturing them in liquid LB medium containing various concentrations of AHL (0.1nM - 1000nM).<br>
 +
Then we confirmed whether the “Sender” could produce AHL. The supernatant of the “Sender” cell’s medium was added into the medium of “Reporter” cells and the production of AHL was confirmed by the expression of GFP from the “Reporter” cells.<br>
 +
Following plasmids were introduced into E. coli. <br>
 +
Reporter<br>
 +
Fig. 1で示したプラスミドをE.coliのDH5α株にダブルトラフォメすることで、E.coliが3OC8AHLシグナルや3OC6AHLシグナルに反応してGFPを生産するようになる。<br>
 +
<figure>
 +
    <img src="https://static.igem.org/mediawiki/2017/2/25/T--TokyoTech--Construct1.jpg" style="max-width:50%">
 +
    <figcaption style="font-family: Poppins;font-size: 16px">Fig.1Construction of LuxR gene and Plux-gfp gene</figcaption>
 +
    </figure>
 +
 
 +
<figure>
 +
<br>
 +
Sender<br>
 +
Fig. 2 に示したように、恒常プロモーターであるPtetの下流にTraIをつなぐことによって、常に3OC8AHLを合成するE.coliを作ることができる。<br>
 +
<figure>
 +
    <img src="https://static.igem.org/mediawiki/2017/d/d8/T--TokyoTech--Construct3.jpg" style="max-width:50%">
 +
    <figcaption style="font-family: Poppins;font-size: 16px">Fig.2 Construction of TraI gene</figcaption>
 +
    </figure>
 +
 
 +
<figure>
 
     </p>
 
     </p>
 
   </div>
 
   </div>
Line 81: Line 102:
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h1><!-- 小見出し -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h1><!-- 小見出し -->
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">LuxR is Receptor gene for C6 signals. But it is known LuxR bind to other AHL such as C10 and cause crosstalk.
+
     <p style="font-family: Poppins;font-size: 16px">
We confirmed LuxR respond to C8 signals and have almost same sensitibvity in the case of C6 signals.
+
LuxR protein is a receptorfor C6 signals. However, previous study (文献) showed that it can also bind to other kinds of AHL, such as C10 .<br>
Receiver E.coli’s RFU (Reletive Fluoroscent Units) in each concentration (1μM,100nM,10nM…) is shown in Figure .  
+
We confirmed that LuxR could also respond to C8 signals as sensitive as respoding of C6 signals. Receiver E.coli’s RFU (Reletive Fluoroscent Units) in each AHL concentration (0.01 nM ? 1000 nM) is shown in Figure . <br>
Error bar have a same width as standard deviation (n=3).
+
Detection limit was over 10nM in case of C6 and C8. RFU valueswere almost same over 100nM. <br>
Detection limit is over 10nM in case of C6 and C8.
+
RFU values are almost same over 100nM.
+
 
     </p>
 
     </p>
 
     <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
     <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
     <figure>
 
     <figure>
     <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--Concentration_dependance_of_RFU.jpg" style="max-width:50%">
+
     <img src="https://static.igem.org/mediawiki/2017/9/95/T--TokyoTech--TraIfigure1.jpg="max-width:50%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig. 画像タイトル</figcaption>
+
    <figcaption style="font-family: Poppins;font-size: 16px">Fig.3 Concentration dependance of Reletive Fluoroscent Units </figcaption>
 +
    </figure>
 +
    <p style="font-family: Poppins;font-size: 16px">
 +
Error bar have a same width as standard deviation (n=3).
 +
    </p>
 +
<figure>
 +
    <img src="https://static.igem.org/mediawiki/2017/a/a7/T--TokyoTech--TraIfigure2.jpg" style="max-width:50%">
 +
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.4 Theoretical formula </figcaption>
 
     </figure>
 
     </figure>
 
     </div>
 
     </div>
    <p style="font-family: Poppins;font-size: 16px">Supernatant Assay
+
   
 
+
    </p>
+
  
 
     <p style="font-family: Poppins;font-size: 16px">
 
     <p style="font-family: Poppins;font-size: 16px">
  Temperature dependence of AHL production.
+
Supernatant Assay <br>
    </p>
+
Temperature dependence of AHL production. <br>
    <p style="font-family: Poppins;font-size: 16px">
+
We found that Amount of C8 production is depend on temperature. RFU was 14 folds larger than DH5α. <br>
We found that Amount of C8 production is depend on culture temperature. RFU is 14 folds larger than DH5α.  
+
 
 
     </p>
 
     </p>
 +
 
         <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
         <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
     <figure>
 
     <figure>
     <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--Concentration_dependance_of_RFU.jpg" style="max-width:50%">
+
     <img src="https://static.igem.org/mediawiki/2017/4/46/T--TokyoTech--TraIfigure3.jpg" style="max-width:50%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig. 画像タイトル2</figcaption>
+
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.5 Temperature dependancies of 3OC8AHL production</figcaption>
 
     </figure>
 
     </figure>
 
     </div>
 
     </div>
Line 121: Line 146:
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Discussion</b></h1>
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Discussion</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">To send a molecular signal AHL to mammalian cells, our goal is 20μM of C8 production.
+
     <p style="font-family: Poppins;font-size: 16px">
Receiver E.coli’s sensitivity is enough to detect such a small amount of AHL. But Sender E.coli’s C8 production is not enough to send AHL.
+
We confirmed that E. coli can produce uuu μM. However previous study (文献) showed that 20μM of C8 is required to activate the target gene in human cells.Therefore, we need further improvement of C8 production.<br>
TraI is derived from soil microorganism A. Tumefaciens.
+
Result of Figure.5 shows temperature dependancies of 3OC8AHL production. TraI is derived from soil microorganism A. Tumefaciens. It is rarely happen that Temperature of the soil rise above 37 ℃. Therefore it is considered that TraI protein  does not work properly above 37℃. <br>
It is rarely happen that Temperature of the soil rise above 37 ℃.
+
 
Therefore It is considered that TraI gene does not work properly above 37℃ of culture temperature.
+
  
 
     </p>
 
     </p>
Line 131: Line 155:
 
</div>
 
</div>
  
 +
<hr>
 +
 +
<div class="w3-container" id="results" style="margin-top:20px">
 +
    <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b> Material and Methods</b></h1>
 +
    <hr style="width:50px;border:5px solid red" class="w3-round">
 +
    <p style="font-family: Poppins;font-size: 16px">
 +
Reagent assay<br>
 +
1. Cultivate Receiver E.coli in LB medium containing antibiotics for about 15hours<br>
 +
2. Dilute the culture to 1/200 with flesh LB medium containing antibiotics<br>
 +
3. Incubate the flesh culture for 2 hours<br>
 +
4. Mix 495μL of the culture with 5μL of DMSO solution (each DMSO is containing 100 microM,10microM...of AHL to reach final concentration 1microM 100nM...) in micro tube<br>
 +
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃ <br>
 +
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm) and absorbance (Measurement wavelength is 600nm) Supernatant assay<br>
 +
Supernatant Assay<br>
 +
1. Cultivate Sender E.coli in LB medium for about 15hours<br>
 +
2. Centrifuge the culture 16,000rpm and 5minutes<br>
 +
3. Follow Reagent assay process (1~4) and Prepare Reporter culture.<br>
 +
4. Mix 250μL of sender culture’s supernatant with Reporter culture in micro tube.<br>
 +
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃<br>
 +
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm gain is 45) and absorbance (Measurement wavelength is 600nm)<br>
 +
 +
    </p>
 
<hr>
 
<hr>
  
Line 143: Line 189:
 
</div>
 
</div>
  
 +
<hr>
 
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p></div>
 
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p></div>
  

Revision as of 18:18, 29 October 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech

TraI Assay


Introduction


Quorum Sensing is cell-to-cell communication system which is used variety of microorganism. Signal molecular used in Quorum sensing has variety of chemical structure. LuxI is 合成遺伝子 of 3OC6AHL and TraI is 合成遺伝子 of 3OC8AHL. Chemical structures of these molecule are shown Figure. 1. LuxR gene express intracellular LuxR receptor. Signal molecular and this receptor form complex. This complex interacts with responsive promoters, Plux and regulates transcription of downstream genes. The concentration of signal molecular increase with cell density. By using this system, microorganism assess their local density and regulates gene expression.
In previous study, a novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR was developed. In this system, transcription downstream of a region called CMV minimal promoter is induced in the presence of signal molecular 3OC8AHL. Therefore, we chose 3OC8AHL as signal molecule and tried to make E.coli to produce 3OC8AHL.


Summary of experiment


In this section, we confirmed whether E. coli expressing Tral protein truly produced signal molecules, AHL (Acyl Homoserine Lactone).
To achieve this goal, we constructed two types of E. coli. One is the “Sender” E. coli which produces AHL and the other is the “Reporter” E. coli which expresses GFP in the presence of AHL.
To begin with, we evaluated whether “Reporter” cell could express GFP dependent on AHL by culturing them in liquid LB medium containing various concentrations of AHL (0.1nM - 1000nM).
Then we confirmed whether the “Sender” could produce AHL. The supernatant of the “Sender” cell’s medium was added into the medium of “Reporter” cells and the production of AHL was confirmed by the expression of GFP from the “Reporter” cells.
Following plasmids were introduced into E. coli.
Reporter
Fig. 1で示したプラスミドをE.coliのDH5α株にダブルトラフォメすることで、E.coliが3OC8AHLシグナルや3OC6AHLシグナルに反応してGFPを生産するようになる。

Fig.1Construction of LuxR gene and Plux-gfp gene

Sender
Fig. 2 に示したように、恒常プロモーターであるPtetの下流にTraIをつなぐことによって、常に3OC8AHLを合成するE.coliを作ることができる。
Fig.2 Construction of TraI gene


Results


LuxR protein is a receptorfor C6 signals. However, previous study (文献) showed that it can also bind to other kinds of AHL, such as C10 .
We confirmed that LuxR could also respond to C8 signals as sensitive as respoding of C6 signals. Receiver E.coli’s RFU (Reletive Fluoroscent Units) in each AHL concentration (0.01 nM ? 1000 nM) is shown in Figure .
Detection limit was over 10nM in case of C6 and C8. RFU valueswere almost same over 100nM.

Fig.3 Concentration dependance of Reletive Fluoroscent Units

Error bar have a same width as standard deviation (n=3).

Fig.4 Theoretical formula

Supernatant Assay
Temperature dependence of AHL production.
We found that Amount of C8 production is depend on temperature. RFU was 14 folds larger than DH5α.

Fig.5 Temperature dependancies of 3OC8AHL production

Discussion


We confirmed that E. coli can produce uuu μM. However previous study (文献) showed that 20μM of C8 is required to activate the target gene in human cells.Therefore, we need further improvement of C8 production.
Result of Figure.5 shows temperature dependancies of 3OC8AHL production. TraI is derived from soil microorganism A. Tumefaciens. It is rarely happen that Temperature of the soil rise above 37 ℃. Therefore it is considered that TraI protein does not work properly above 37℃.


Material and Methods


Reagent assay
1. Cultivate Receiver E.coli in LB medium containing antibiotics for about 15hours
2. Dilute the culture to 1/200 with flesh LB medium containing antibiotics
3. Incubate the flesh culture for 2 hours
4. Mix 495μL of the culture with 5μL of DMSO solution (each DMSO is containing 100 microM,10microM...of AHL to reach final concentration 1microM 100nM...) in micro tube
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm) and absorbance (Measurement wavelength is 600nm) Supernatant assay
Supernatant Assay
1. Cultivate Sender E.coli in LB medium for about 15hours
2. Centrifuge the culture 16,000rpm and 5minutes
3. Follow Reagent assay process (1~4) and Prepare Reporter culture.
4. Mix 250μL of sender culture’s supernatant with Reporter culture in micro tube.
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm gain is 45) and absorbance (Measurement wavelength is 600nm)


Reference


参考文献


Hajime Fujita: All Rights Reserved