Difference between revisions of "Team:Tianjin/Demonstrate"

Line 1,071: Line 1,071:
 
                   <div id="pic_Seventy-seven" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/><p style="font-size:15px;text-align:center"><br/>Figure 5-3.The variations of cadmium(II) consumption with time for S.C-Cd、S1 and BY4741 at 16 mg/L cadmium(II) concentrations </p></div>  
 
                   <div id="pic_Seventy-seven" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/><p style="font-size:15px;text-align:center"><br/>Figure 5-3.The variations of cadmium(II) consumption with time for S.C-Cd、S1 and BY4741 at 16 mg/L cadmium(II) concentrations </p></div>  
 
<p>Afterwards, we check if the <i>vika</i> enzyme could work well. The Cu yeast with a plasmid expressing <i>vika</i> enzyme is grew in the medium with <i> raffinose</i>, then transferred to heavy metal solution.
 
<p>Afterwards, we check if the <i>vika</i> enzyme could work well. The Cu yeast with a plasmid expressing <i>vika</i> enzyme is grew in the medium with <i> raffinose</i>, then transferred to heavy metal solution.
<p>Fig.X3 clearly shows the change of the concentration of heavy metal ions in the supernatant. Firstly, the Cu yeast works smoothly. The concentration of copper ions declines over time while that of cadmium ions barely changes. X hours later, we add <i>galactose</i> to the solution. Situation changes. <i>Galactose</i> induces the enzyme, changing Cu yeast to Cd yeast. It leads to faster adsorption of cadmium but slower for copper..</p>
+
<div class="zxx_zoom_demo" align="center">
 +
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
 +
                    <div class="small_pic_demo" align="center">
 +
                        <a href="#pic_eighty">
 +
                          <img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"></a>
 +
<p style="font-size:15px;text-align:center"><br/>Figure 1. This is a simplified version of this vector expressing the Cre recombinase enzyme. CRE-EBD is the coding sequence of Cre recombinase; PCLB2 is a constitutive  promoter in yeast; CYC1 is a terminator.</p>
 +
                    </div>
 +
                 
 +
                    </div>
 +
                 
 +
                  <div id="pic_eighty" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"><p style="font-size:15px;text-align:center"><br/>Figure 1. This is a simplified version of this vector expressing the Cre recombinase enzyme. CRE-EBD is the coding sequence of Cre recombinase; PCLB2 is a constitutive  promoter in yeast; CYC1 is a terminator.</p></div>
 +
<p>Fig.5-4 clearly shows the change of the concentration of heavy metal ions in the supernatant. Firstly, the Cu yeast works smoothly. The concentration of copper ions declines over time while that of cadmium ions barely changes. 12 hours later, we add <i>galactose</i> to the solution. Situation changes. <i>Galactose</i> induces the enzyme, changing Cu yeast to Cd yeast. It leads to faster adsorption of cadmium but slower for copper..</p>
 
<h4> DISCUSSION & FUTURE WORK</h4>
 
<h4> DISCUSSION & FUTURE WORK</h4>
 
<hr>
 
<hr>

Revision as of 06:16, 30 October 2017

/* OVERRIDE IGEM SETTINGS */

Demonstrate