Line 495: | Line 495: | ||
<div class="modelingPartContent" id="partA"> | <div class="modelingPartContent" id="partA"> | ||
− | <p class="content">At first, we assume that E. coli proliferate and die at the same ratio over time, and the value difference is the birth rate (μ<sub>g</sub>). So, we do derivative with this assumption.</p> | + | <p class="content">At first, we assume that E. coli proliferate and die at the same ratio over time, and the value difference is the birth rate (<span style="font-style:italic;">μ<sub>g</sub></span>). So, we do derivative with this assumption.</p> |
− | <img src="" class="bigphoto" width="70%"> | + | <img src="https://static.igem.org/mediawiki/2017/7/7e/Model_1.jpeg" class="bigphoto" width="70%"> |
<p class="content">Substituting the boundary condition, <span style="font-style:italic;">t = 0, N = N<sub>0</sub></span>, we then have ∴ e<sup>C<sub>2</sub>-C<sub>1</sub></sup>=N<sub>0</sub> | <p class="content">Substituting the boundary condition, <span style="font-style:italic;">t = 0, N = N<sub>0</sub></span>, we then have ∴ e<sup>C<sub>2</sub>-C<sub>1</sub></sup>=N<sub>0</sub> | ||
Line 507: | Line 507: | ||
<p class="content">What’s more, it is useless to say that <span style="font-style:italic;">E. coli</span> consumes their “food”, LB, all the time. Thus, if <span style="font-style:italic;">E. coli</span> consumes their food steadily, the LB consuming rate will be proportional to <span style="font-style:italic;">N</span>, then we can write down the equation:</p> | <p class="content">What’s more, it is useless to say that <span style="font-style:italic;">E. coli</span> consumes their “food”, LB, all the time. Thus, if <span style="font-style:italic;">E. coli</span> consumes their food steadily, the LB consuming rate will be proportional to <span style="font-style:italic;">N</span>, then we can write down the equation:</p> | ||
− | <img src="" class="bigphoto" width="70%"> | + | <img src="https://static.igem.org/mediawiki/2017/4/48/Model_2.jpeg" class="bigphoto" width="70%"> |
− | <p class="content">By substituting the boundary condition, we then have 𝐶= − 𝑛<sub>𝐿𝐵<sub>0</sub></sub>/𝑘<sub>𝑐𝑜𝑛</sub>−𝑁<sub>0</sub>/𝜇<sub>𝑔</sub> | + | <p class="content">By substituting the boundary condition, we then have 𝐶= − 𝑛<sub>𝐿𝐵<sub>0</sub></sub>/𝑘<sub>𝑐𝑜𝑛</sub>−𝑁<sub>0</sub>/𝜇<sub>𝑔</sub> |
+ | <br>So the relation between <span style="font-style:italic;">n<sub>LB</sub></span> and <span style="font-style:italic;"><sub>t</sub></span> is: | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2017/e/e4/Model_3.jpeg" class="bigphoto" width="70%"> | ||
</div> | </div> |
Revision as of 16:14, 30 October 2017