Line 533: | Line 533: | ||
<!--2.--> | <!--2.--> | ||
<div class="modelingPart"> | <div class="modelingPart"> | ||
− | <h2 class="content-1" id="titleB" style="color:#44FCCE">II. | + | <h2 class="content-1" id="titleB" style="color:#44FCCE">II. The Expression of Different Color</h2> |
<div class="modelingPartContent" id="partB"> | <div class="modelingPartContent" id="partB"> | ||
− | <p class="content"> | + | <p class="content-1">Assumption</p> |
− | < | + | <p class="content">1. In order to write the equations down simply, we assume that all the chemical reaction rates are proportional to the concentration of each reagent (e.g. for the reaction: A+B+C→D+E,the forward rate <span style="font-style:italic;">r<sub>+</sub>=k<sub>+</sub>[A][B][C]).</p></span> |
− | < | + | <p class="content">2.For every substances produced by biobricks, we assume that their production rate =<span style="font-style:italic;">φ[CoPB]</span>, <br>[CoPB]= the concentration of the promoted biobrick</br><br>φ= the result of multiplication of rate constant, coefficient of correction (since a biobrick is different from a reagtant), a dimension <span style="font-style:italic;">T<sup>-1</sup></span></br></p> |
− | < | + | |
− | < | + | <p class="content-1">Equations & Solutions</p> |
− | </ | + | <img src="https://static.igem.org/mediawiki/2017/8/8c/Equations.png" class="bigphoto" width="70%"> |
+ | <p class="content">According to the picture (Figure 1), we can write down 3 equations as follows:</p> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/c/c4/Modeling5.jpeg" class="bigphoto" width="70%"> | ||
+ | <p class="content">P.S. φ= the result of multiplication of rate constant, coefficient of correction (since a promoter is different from a reagtant), a dimension <span style="font-style:italic;">𝑇<sub>−1</sub></span></p> | ||
+ | |||
+ | <p class="content">By solving these 3 equations, the solution expressed by <span style="font-style:italic;">φ、k and [P<sup>a</sup>]</span> are as follows: | ||
+ | <img src="https://static.igem.org/mediawiki/2017/f/f0/Modeling6.jpeg" class="bigphoto" width="70%"> | ||
+ | |||
+ | <p class="content">When the concentration of each activated promoter reaches to each of their steady state, then we can simplify the equations as follows:</p> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/5/57/Modeling7.jpeg" class="bigphoto" width="70%"> | ||
+ | |||
+ | <p class="content">Besides, since <span style="font-style:italic;">lim<sub>t→∞</sub>(1-1/e<sup>kt</sup> = 1</span>, satisfying the definition of the horizontal asymptotes. And (d(1-1/e<sup>kt</sup>)/dt=ke<sup>-kt</sup>>0 (t∈[0,∞)), so it is a strictly increasing function. | ||
+ | <br>So, this is a strictly increasing and convergent function with an upper bound 1.</br> | ||
+ | <br>Then the result is that the extremum of the concentration is:</br></p> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2017/e/e8/Modeling8.jpeg" class="bigphoto" width="70%"> | ||
+ | |||
</div> | </div> | ||
</div> | </div> | ||
Line 594: | Line 610: | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
Revision as of 00:44, 31 October 2017