Difference between revisions of "Team:BostonU/HP/Gold Integrated"

Line 256: Line 256:
 
   <p class="body-type mainwrap">For example, we presented our work at the STEM Pathways Dinner and Dialogue, in which a variety of academic and industry speakers showcased new technologies in synthetic biology. In this setting, we were able to witness large-scale conversations about synthetic biology in action, all in the presence of scientists, graduate and undergraduate students, high school teachers, and other members from our Boston community. Presentations focused on new synthetic biology technologies and applications, such as shoes made of silk engineered to be stronger than traditional silk from silkworms. In this instance, the new product is interesting, but what we find even more important is the foundational technology that allows for the product, what has an extensive application space. [include sentence about how it’s the foundational advance of the material itself that matters, and not the product] Some attendees started to voice concerns and frustrations after these presentations, with an overall sentiment that the power of synthetic biology was being leveraged for making shoes and not for more pressing applications like curing diseases. In this conversation, we saw a reflection of the difficulties we faced in promoting the importance of foundational advances in research. We want to emphasize that foundational advances are the cornerstone of life-changing innovations in synthetic biology.</p>
 
   <p class="body-type mainwrap">For example, we presented our work at the STEM Pathways Dinner and Dialogue, in which a variety of academic and industry speakers showcased new technologies in synthetic biology. In this setting, we were able to witness large-scale conversations about synthetic biology in action, all in the presence of scientists, graduate and undergraduate students, high school teachers, and other members from our Boston community. Presentations focused on new synthetic biology technologies and applications, such as shoes made of silk engineered to be stronger than traditional silk from silkworms. In this instance, the new product is interesting, but what we find even more important is the foundational technology that allows for the product, what has an extensive application space. [include sentence about how it’s the foundational advance of the material itself that matters, and not the product] Some attendees started to voice concerns and frustrations after these presentations, with an overall sentiment that the power of synthetic biology was being leveraged for making shoes and not for more pressing applications like curing diseases. In this conversation, we saw a reflection of the difficulties we faced in promoting the importance of foundational advances in research. We want to emphasize that foundational advances are the cornerstone of life-changing innovations in synthetic biology.</p>
 
<center>
 
<center>
<img src="https://2017.igem.org/File:T--BostonU--DinnerandDialogue1.png"></img>
+
<img src="https://2017.igem.org/File:T--BostonU--DinnerandDialogue1.png" height = "600" width="430"></img>
 
</center>
 
</center>
 +
<div class="figwrap mainwrap body-type">
 +
</div>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
   <p class="body-type mainwrap">We express this idea in our art piece entitled <a href="https://2017.igem.org/Team:BostonU/HP/Silver">“Circadia Synthetica.”</a> Our art installation explores three levels of synthetic biology applications by imagining a time in which it is necessary for humans to live on Mars. How can we harness synthetic biology to enable human survival on another planet? The painting is a triptych with three interlocking panels: One half of each panel shows naturally existing circadian rhythms in bacteria and humans, as well as a synthetically modified flower that changes color based on the time of day.  The other half of each panel shows how bacteria, plants, or humans could be synthetically modified using the synthetic circadian system from the plants on Earth. Through this project, we hope to generate thought and conversations from viewers about how basic, foundational research, such as the engineering of a molecular clock, are necessary for solving much larger problems in the future.</p>
 
   <p class="body-type mainwrap">We express this idea in our art piece entitled <a href="https://2017.igem.org/Team:BostonU/HP/Silver">“Circadia Synthetica.”</a> Our art installation explores three levels of synthetic biology applications by imagining a time in which it is necessary for humans to live on Mars. How can we harness synthetic biology to enable human survival on another planet? The painting is a triptych with three interlocking panels: One half of each panel shows naturally existing circadian rhythms in bacteria and humans, as well as a synthetically modified flower that changes color based on the time of day.  The other half of each panel shows how bacteria, plants, or humans could be synthetically modified using the synthetic circadian system from the plants on Earth. Through this project, we hope to generate thought and conversations from viewers about how basic, foundational research, such as the engineering of a molecular clock, are necessary for solving much larger problems in the future.</p>

Revision as of 04:58, 31 October 2017

INTEGRATED HUMAN PRACTICES