Difference between revisions of "Team:Tianjin/Demonstrate"

Line 479: Line 479:
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/0a/Chenxiyuyuantu2.jpg"><p style="font-size:15px;text-align:center"><br/>Fig 2-4. Three modified colonies and one resulting colony.
+
                   <div id="pic_fortythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/0a/Chenxiyuyuantu2.jpg"><p style="font-size:15px;text-align:center"><br/>Fig 2-4. Three modified colonies and one resulting colony.</div>  
The upper left corner of the bacteria is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (PVUVC) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (PVRVC) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner are diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p></div>  
+
  
   <p>The upper left corner of the bacteria is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (PVUVC) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (PVRVC) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner are diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p>
+
   <p>The upper left corner of the bacteria is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (<b><i>PVUVC</i></b>) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (<b><i>PVRVC</i></b>) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner are diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p>
  
 
   <p>The yellow colony in the figure is mating successfully. After the induction of <i>galactose</i>, <i>vika recombinase</i> was expressed, and <i>red fluorescent protein</i> gene and terminator was deleted so that <i>β-carotene</i> expresses. The color of colony was changed from white to yellow. In addition to it, we also tried other methods to turn on the switch.</p>
 
   <p>The yellow colony in the figure is mating successfully. After the induction of <i>galactose</i>, <i>vika recombinase</i> was expressed, and <i>red fluorescent protein</i> gene and terminator was deleted so that <i>β-carotene</i> expresses. The color of colony was changed from white to yellow. In addition to it, we also tried other methods to turn on the switch.</p>
Line 498: Line 497:
 
                   <div id="pic_fortyfour" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/7/77/Tianjin-3-Bacteria_after_mating_cultivated_on_the_Sc-His_plate_yuantu.png"><br/>Fig 2-5. Bacteria after mating cultivated on the Sc-His plate.</p></div>  
 
                   <div id="pic_fortyfour" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/7/77/Tianjin-3-Bacteria_after_mating_cultivated_on_the_Sc-His_plate_yuantu.png"><br/>Fig 2-5. Bacteria after mating cultivated on the Sc-His plate.</p></div>  
 
<p>There are 377 yellow colonies and 365 white colonies in the field of view.</p>
 
<p>There are 377 yellow colonies and 365 white colonies in the field of view.</p>
   <p>We used another α-type yeast named <i>BY4742</i>, which has a plasmid called <i>pRS413</i> with selective marker <i>His</i>. It could express <i>vika recombinase</i> before mating. It mated with a-type <i>Saccharomyces cerevisiae</i> PVRVC, and then yeast cultured on Sc-His plate. As can be seen from the figure above, the reorganization efficiency is high, which reaches 50.8 percent. This proves that our Mating switcher is fast and efficient.</p>
+
   <p>We used another α-type yeast named <i>BY4742</i>, which has a plasmid called <i>pRS413</i> with selective marker <i>His</i>. It could express <i>vika recombinase</i> before mating. It mated with a-type <i>Saccharomyces cerevisiae</i> <b><i>PVRVC</i></b>, and then yeast cultured on Sc-His plate. As can be seen from the figure above, the reorganization efficiency is high, which reaches 50.8 percent. This proves that our Mating switcher is fast and efficient.</p>
  
 
     <div class="zxx_zoom_demo" align="center">
 
     <div class="zxx_zoom_demo" align="center">
Line 512: Line 511:
 
                   <div id="pic_fortyfive" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6d/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate_yuantu.png"><br/>Fig 2-6. Bacteria after mating cultivated on the Sc-Ura plate.</p></div>  
 
                   <div id="pic_fortyfive" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6d/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate_yuantu.png"><br/>Fig 2-6. Bacteria after mating cultivated on the Sc-Ura plate.</p></div>  
 
<p>There are 325 yellow colonies and 31 white colonies in the field of view.</p>
 
<p>There are 325 yellow colonies and 31 white colonies in the field of view.</p>
   <p>Apart from mating, we also transformed plasmid <i>pRS416</i> with <i>vika</i> gene into the PVRVC. The efficiency is up to 91.3 percent in this figure.</p>
+
   <p>Apart from mating, we also transformed plasmid <i>pRS416</i> with <i>vika</i> gene into the <b><i>PVRVC</i></b>. The efficiency is up to 91.3 percent in this figure.</p>
   <p>Compare above two methods, mating and transformation of plasmid, we find that mating is not as efficient as the transformation of the plasmid. After analysis, we came to the conclusions as follows. For the mating method, <i>vika recombinase</i> has stop expressing when <i>BY4742</i> mated with PVRVC in YPD medium. The previously expressed Vika recombinase may be degraded during the growth. In contrast to this, with another method that the plasmid was transformed into PVRVC directly, <i>vika recombinase</i> is continuously expressed during cell growth. So the efficiency of the second method is higher than the first method.</p>
+
   <p>Compare above two methods, mating and transformation of plasmid, we find that mating is not as efficient as the transformation of the plasmid. After analysis, we came to the conclusions as follows. For the mating method, <i>vika recombinase</i> has stop expressing when <i>BY4742</i> mated with <i><b>PVRVC</b></i> in YPD medium. The previously expressed Vika recombinase may be degraded during the growth. In contrast to this, with another method that the plasmid was transformed into <i><b>PVRVC</b></i> directly, <i>vika recombinase</i> is continuously expressed during cell growth. So the efficiency of the second method is higher than the first method.</p>
  
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
Line 526: Line 525:
 
                    
 
                    
 
                   <div id="pic_fortysix" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1d/Chenxinyuyuantu5.jpg"><br/>Fig 2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p></div>  
 
                   <div id="pic_fortysix" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1d/Chenxinyuyuantu5.jpg"><br/>Fig 2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p></div>  
   <p>We also used other a type <i>Saccharomyces cerevisiae</i> to achieve mating switcher. After changing <i>TEF</i> promotor to <i>TDH3</i> promotor, we repeated the test according to the above two methods. The four strains are all a-type haploid synthetic <i>Saccharomyces cerevisiae</i> named TVRVC NO.2 (upper left), NO.4 (upper right), NO.11 (lower left) and NO.19 (lower right) respectively. The color appears to be white because <i>β-carotene</i> is not expressed.</p>
+
   <p>We also used other a type <i>Saccharomyces cerevisiae</i> to achieve mating switcher. After changing <i>TEF</i> promotor to <i>TDH3</i> promotor, we repeated the test according to the above two methods. The four strains are all a-type haploid synthetic <i>Saccharomyces cerevisiae</i> named <i><b>TVRVC</b></i> NO.2 (upper left), NO.4 (upper right), NO.11 (lower left) and NO.19 (lower right) respectively. The color appears to be white because <i>β-carotene</i> is not expressed.</p>
  
 
   <div class="zxx_zoom_demo_qqqqq" align="center">
 
   <div class="zxx_zoom_demo_qqqqq" align="center">
Line 562: Line 561:
 
<hr>
 
<hr>
  
<p>Our mating switch plays an important role in many respects, such as including heavy metal treatment and cell signal switching. And we created a novel method to prove the effectiveness of the switch in an intuitive and effective way. The terminator of the first part (PVUVC) terminates the expression of the downstream gene, proving the validity of the switcher, and the second part (PVRVC) creates an evident method of color conversion to determine the state of the switcher.</p>
+
<p>Our mating switch plays an important role in many respects, such as including heavy metal treatment and cell signal switching. And we created a novel method to prove the effectiveness of the switch in an intuitive and effective way. The terminator of the first part (PVUVC) terminates the expression of the downstream gene, proving the validity of the switcher, and the second part (<b><i>PVRVC</i></b>) creates an evident method of color conversion to determine the state of the switcher.</p>
  
 
<p>Aiming to increase the Vika-vox system efficiency, we let Vika enzyme saturate expression, but the efficiency was still relatively low. We hypothesized that this phenomenon was caused by degradation of the Vika enzyme in the YPD culture medium. We’d better change the composition or proportion of YPD ingredients to find out the best culture conditions. We are looking forward to more research in this field so that we can make this system work better and even perfectly.</p>
 
<p>Aiming to increase the Vika-vox system efficiency, we let Vika enzyme saturate expression, but the efficiency was still relatively low. We hypothesized that this phenomenon was caused by degradation of the Vika enzyme in the YPD culture medium. We’d better change the composition or proportion of YPD ingredients to find out the best culture conditions. We are looking forward to more research in this field so that we can make this system work better and even perfectly.</p>

Revision as of 15:26, 31 October 2017

/* OVERRIDE IGEM SETTINGS */

Demonstrate