Difference between revisions of "Team:Newcastle/Results"

Line 471: Line 471:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
           <p>Promoter libraries can be created by varying many different as-pects of a wildtype promoter such as the upstream element prior to the -35 region, the downstream element, after the -10 region prior to -1, and its core sequence, between the -35 and -10 regions (Schlabach et al., 2010). In this study, we propose to use the PLac promoter sequence as our wildtype for creating promoter designs varying different areas of its sequence. One of such variation will be the substitution of the -35 and -10 currently found in PLac with the -35 (TTGACA) and -10 (TATAAT) regions found to be the most commonly occurring in E. coli natural promoters (Hawley and McClure, 1983, DeBoer, 1985, Harley and Reynolds, 1987). These were chosen to be the constant region between different promoter designs.</p>
+
           <p>Promoter libraries can be created by varying many different as-pects of a wildtype promoter such as the upstream element prior to the -35 region, the downstream element, after the -10 region prior to -1, and its core sequence, between the -35 and -10 regions (Schlabach <i>et al</i>., 2010). In this study, we propose to use the PLac promoter sequence as our wildtype for creating promoter designs varying different areas of its sequence. One of such variation will be the substitution of the -35 and -10 currently found in PLac with the -35 (TTGACA) and -10 (TATAAT) regions found to be the most commonly occurring in <i>E. coli</i> natural promoters (Hawley and McClure, 1983, DeBoer, 1985, Harley and Reynolds, 1987). These were chosen to be the constant region between different promoter designs.</p>
 
           </br>
 
           </br>
 
           <img src="https://static.igem.org/mediawiki/2017/f/ff/T--Newcastle--Lais--SPL--Design1.png" class="img-fluid border border-dark rounded" style="margin: 2%; max-width: 70%">
 
           <img src="https://static.igem.org/mediawiki/2017/f/ff/T--Newcastle--Lais--SPL--Design1.png" class="img-fluid border border-dark rounded" style="margin: 2%; max-width: 70%">
  
 
<p>
 
<p>
         <b>Figure 1:</b> Graph Indicating the Most Frequent -35 and -10 Regions Found in E. coli Promoters. This image was taken from Harley and Reynolds (1987).
+
         <b>Figure 1:</b> Graph Indicating the Most Frequent -35 and -10 Regions Found in <i>E. coli</i> Promoters. This image was taken from Harley and Reynolds (1987).
 
</p>
 
</p>
 
           </br>
 
           </br>
Line 484: Line 484:
  
 
<p>
 
<p>
         <b>Figure 2:</b> Graph Indicating the Most Frequent Spacer Between -35 and -10 Regions Found in E. coli Promoters. This image was taken from Harley and Reynolds (1987).
+
         <b>Figure 2:</b> Graph Indicating the Most Frequent Spacer Between -35 and -10 Regions Found in <i>E. coli</i> Promoters. This image was taken from Harley and Reynolds (1987).
 
</p>
 
</p>
 
           </br>         
 
           </br>         
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
<p>As seen in the image above (Image 3B), the regions known to be important for a reliable promoter expression (-35 and -10 regions) were changed to variant of the wildtype but kept constant between the three distinctive designs. These regions were discovered to be the most frequent occurring -35 and -10 regions in native E. coli promoters by Harley and Roberts in 1987. The sequences between such converged regions were kept constant as per the wildtype for designs 2 (P2) and 3 (P3). For design 1 (P1) however, they were randomized in order to test its effect. The decision to reduce the number of base pairs from 18, found in PLac, to 17 was made due to the results of the study by Harley and Roberts in 1987, listing this number to be the most frequent occurring number of base pairs gap found in regions in native E. coli promoters.
+
<p>As seen in the image above (Image 3B), the regions known to be important for a reliable promoter expression (-35 and -10 regions) were changed to variant of the wildtype but kept constant between the three distinctive designs. These regions were discovered to be the most frequent occurring -35 and -10 regions in native <i>E. coli</i> promoters by Harley and Roberts in 1987. The sequences between such converged regions were kept constant as per the wildtype for designs 2 (P2) and 3 (P3). For design 1 (P1) however, they were randomized in order to test its effect. The decision to reduce the number of base pairs from 18, found in PLac, to 17 was made due to the results of the study by Harley and Roberts in 1987, listing this number to be the most frequent occurring number of base pairs gap found in regions in native <i>E. coli</i> promoters.
 
           </br></br>
 
           </br></br>
 
<p>Design 1 (P1) was made by randomizing all elements of the promoter while only keeping the -35 and -10 regions constant. The upstream element (US element) of P2 were randomized while keeping the downstream element (DS element) conserved as per wildtype. The DS element of P3 however, was randomized while keeping the upstream element conserved. This systematic approach of randomization was chosen as it allows for the most variation between promote designs allowing for a rich synthetic promoter library.
 
<p>Design 1 (P1) was made by randomizing all elements of the promoter while only keeping the -35 and -10 regions constant. The upstream element (US element) of P2 were randomized while keeping the downstream element (DS element) conserved as per wildtype. The DS element of P3 however, was randomized while keeping the upstream element conserved. This systematic approach of randomization was chosen as it allows for the most variation between promote designs allowing for a rich synthetic promoter library.
Line 517: Line 517:
 
The plasmid backbone, BBa_J61002, was digested [Protocol Link] using EcoRI and XbaI and purified following gel electrophoresis [Protocol Link].
 
The plasmid backbone, BBa_J61002, was digested [Protocol Link] using EcoRI and XbaI and purified following gel electrophoresis [Protocol Link].
 
         <br/><br/>
 
         <br/><br/>
Promoter designs were assembled [Protocol Link] into BBa_J61002 using BioBrick cloning. Ligations were transformed into E. coli  DH5α cells and gown overnight [Protocol Link].
+
Promoter designs were assembled [Protocol Link] into BBa_J61002 using BioBrick cloning. Ligations were transformed into <i>E. coli</i> DH5α cells and gown overnight [Protocol Link].
 
         <br/><br/>
 
         <br/><br/>
  
Line 539: Line 539:
 
DeBoer, H. (1985). Microbial hybrid promoters. US4551433 A.
 
DeBoer, H. (1985). Microbial hybrid promoters. US4551433 A.
 
         <br/><br/>
 
         <br/><br/>
Harley, C. and Reynolds, R. (1987). Analysis of E.Coli Pormoter sequences. Nucleic Acids Research, 15(5), pp.2343-2361.
+
Harley, C. and Reynolds, R. (1987). Analysis of <i>E.Coli</i> Promoter sequences. Nucleic Acids Research, 15(5), pp.2343-2361.
 
         <br/><br/>
 
         <br/><br/>
Hawley, D. and McClure, W. (1983). Compilation and analysis ofEscherichia colipromoter DNA sequences. Nucleic Acids Research, 11(8), pp.2237-2255.
+
Hawley, D. and McClure, W. (1983). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research, 11(8), pp.2237-2255.
 
         <br/><br/>
 
         <br/><br/>
Lisser, S. and Margalit, H. (1993). Compilation ofE.colimRNA promoter sequences. Nucleic Acids Research, 21(7), pp.1507-1516.
+
Lisser, S. and Margalit, H. (1993). Compilation of <i>E.coli</i> mRNA promoter sequences. Nucleic Acids Research, 21(7), pp.1507-1516.
 
         <br/><br/>
 
         <br/><br/>
 
Liu, M., Tolstorukov, M., Zhurkin, V., Garges, S. and Adhya, S. (2004). A mutant spacer sequence between -35 and -10 elements makes the Plac promoter hyperactive and cAMP receptor protein-independent. Proceedings of the National Academy of Sciences, 101(18), pp.6911-6916.
 
Liu, M., Tolstorukov, M., Zhurkin, V., Garges, S. and Adhya, S. (2004). A mutant spacer sequence between -35 and -10 elements makes the Plac promoter hyperactive and cAMP receptor protein-independent. Proceedings of the National Academy of Sciences, 101(18), pp.6911-6916.

Revision as of 20:04, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!