Difference between revisions of "Team:Newcastle/Results"

Line 829: Line 829:
 
<center><b>Figure 4: </b> <!--- Insert image name between tags. ---->
 
<center><b>Figure 4: </b> <!--- Insert image name between tags. ---->
 
Restriction digestion of the Fim switch plasmid to confirm successful integration into the iGEM pSB1C3 backbone.  The Fim switch plasmid (Lane 1) was digested with XbaI and PstI with expected band sizes of (2840 bp and 2044 bp).  The pSB1C3 plasmid (Lane 2) containing sfGFP as a control was also digested with XbaI and PstI with expected band sizes of (811 bp and 2044 bp).</center></p>
 
Restriction digestion of the Fim switch plasmid to confirm successful integration into the iGEM pSB1C3 backbone.  The Fim switch plasmid (Lane 1) was digested with XbaI and PstI with expected band sizes of (2840 bp and 2044 bp).  The pSB1C3 plasmid (Lane 2) containing sfGFP as a control was also digested with XbaI and PstI with expected band sizes of (811 bp and 2044 bp).</center></p>
<br/><br/>
+
<br/>
 
<p>
 
<p>
 
The Fim switch insert is 2882 bp in length which makes performing standard short sequencing reads challenging as multiple reactions are required to completely sequence the entire part.  To overcome this we used our in-house Illumina MiSEQ to completely sequence the entire plasmid.  Following quality control analysis the sequence was assembled and shown to be a match to the expected Fim switch part.<br/><br/>
 
The Fim switch insert is 2882 bp in length which makes performing standard short sequencing reads challenging as multiple reactions are required to completely sequence the entire part.  To overcome this we used our in-house Illumina MiSEQ to completely sequence the entire plasmid.  Following quality control analysis the sequence was assembled and shown to be a match to the expected Fim switch part.<br/><br/>
Line 849: Line 849:
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/0/01/T--Newcastle--iGEM_FimS_Graph.jpg"/><br/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/0/01/T--Newcastle--iGEM_FimS_Graph.jpg"/><br/>
 
<center><b>Figure 6:</b> <!--- Insert image name between tags. ---->
 
<center><b>Figure 6:</b> <!--- Insert image name between tags. ---->
  Expression of GFP in the reporter (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>)strain in co-culture with the Fim switch strains.  The assay was performed using methods described in <a href="https://static.igem.org/mediawiki/parts/b/b1/--T--Newcastle--MP--Protocol--Fim--96.pdf">Fim 96 Plate assay Protocol</a>.  The data shows the expression of GFP in the reporter strain over a standard growth curve.  The FimW and FimR strains represent the white and red variants of the Fim switch strain respectively, these were co-cultured with the reporter strain in a 1:14 ratio.  Each data point is the mean of 3 biological repeats.  RFU stands for relative fluorescence units.</center><br/><br/>
+
  Expression of GFP in the reporter (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>)strain in co-culture with the Fim switch strains.  The assay was performed using methods described in <a href="https://static.igem.org/mediawiki/parts/b/b1/--T--Newcastle--MP--Protocol--Fim--96.pdf">Fim 96 Plate assay Protocol</a>.  The data shows the expression of GFP in the reporter strain over a standard growth curve.  The FimW and FimR strains represent the white and red variants of the Fim switch strain respectively, these were co-cultured with the reporter strain in a 1:14 ratio.  Each data point is the mean of 3 biological repeats.  RFU stands for relative fluorescence units.</center>
 
<br />
 
<br />
 
</p>
 
</p>

Revision as of 22:46, 31 October 2017

spacefill

Our Experimental Results


Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!