Difference between revisions of "Team:SDSZ-China"

Line 263: Line 263:
 
                     style='-webkit-transform: translateZ(0);width:160px;margin-left:0'>
 
                     style='-webkit-transform: translateZ(0);width:160px;margin-left:0'>
  
                     <li><a href="#cataract">What are Cataracts?</a></li>
+
                     <li><a href="#Background">Background</a></li>
                     <li><a href="#solution">What is our Solution?</a></li>
+
                     <li><a href="#Purpose">Purpose</a></li>
 +
                    <li><a href="#Overview">Overview of the project</a></li>
 +
                    <li><a href="#Goal">Our goal</a></li>
  
 
                 </ul>
 
                 </ul>
Line 275: Line 277:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="col-sm-12">
 
                 <div class="col-sm-12">
                     <h1 id='overview'>Background</h1>
+
                     <h1 id='Background'>Background</h1>
 
                     <p>Bear bile, one of the most famous animal drugs in Traditional Chinese Medicine (TCM), has been recorded in ancient Chinese medicine book as a significant method to treat hepatic and biliary disorders. UDCA, the effective ingredient of bear bile.Aside from the traditional use of bear bile in Chinese medicine, UDCA(ursodeoxycholic acid), the effective ingredient of bear bile acid, has a much larger pharmaceutical application. As well as the usage of UDCA in dissolving gallstone, its efficacy in primary biliary cirrhosis and primary sclerosing cholangitis (PSC) as an adjunct to medical therapy has been well established. Newer indications include its use in the management of chronic hepatitis, cirrhosis, post liver transplant rejection, graft-versus-host disease and acute viral hepatitis, where it not only relieves symptoms of cholestasis but also arrests ongoing hepatocyte necrosis. However, the increasing demand for bear bile has caused bears to be in an endangered state: bear poaching and illegal animal trade have greatly dwindled the number of the wild Asiatic black bear. Apart from that, bear bile farming industry in Asia extracts bile through “milking” from the bears, which is operated through surgically implanting a permanent catheter in the animal's gallbladder to obtain the drips. It is unquestionable that the bear bile farming process will lead to both physical and psychological damage in bears. </p>
 
                     <p>Bear bile, one of the most famous animal drugs in Traditional Chinese Medicine (TCM), has been recorded in ancient Chinese medicine book as a significant method to treat hepatic and biliary disorders. UDCA, the effective ingredient of bear bile.Aside from the traditional use of bear bile in Chinese medicine, UDCA(ursodeoxycholic acid), the effective ingredient of bear bile acid, has a much larger pharmaceutical application. As well as the usage of UDCA in dissolving gallstone, its efficacy in primary biliary cirrhosis and primary sclerosing cholangitis (PSC) as an adjunct to medical therapy has been well established. Newer indications include its use in the management of chronic hepatitis, cirrhosis, post liver transplant rejection, graft-versus-host disease and acute viral hepatitis, where it not only relieves symptoms of cholestasis but also arrests ongoing hepatocyte necrosis. However, the increasing demand for bear bile has caused bears to be in an endangered state: bear poaching and illegal animal trade have greatly dwindled the number of the wild Asiatic black bear. Apart from that, bear bile farming industry in Asia extracts bile through “milking” from the bears, which is operated through surgically implanting a permanent catheter in the animal's gallbladder to obtain the drips. It is unquestionable that the bear bile farming process will lead to both physical and psychological damage in bears. </p>
 
                 </div>
 
                 </div>
Line 282: Line 284:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="col-sm-12">
 
                 <div class="col-sm-12">
                     <h1 id='overview'>Purpose</h1>
+
                     <h1 id='Purpose'>Purpose</h1>
 
                     <p>To find substitute or alternative for bear bile farming, our team will be working on the biological synthesis of the main effective component of this important medicine, UDCA(Ursodeoxycholic Acid). This biological approach will not only be more efficient but also be cheaper than the original chemical approach, which is widely used in the current UDCA synthesis industry. </p>
 
                     <p>To find substitute or alternative for bear bile farming, our team will be working on the biological synthesis of the main effective component of this important medicine, UDCA(Ursodeoxycholic Acid). This biological approach will not only be more efficient but also be cheaper than the original chemical approach, which is widely used in the current UDCA synthesis industry. </p>
 
                 </div>
 
                 </div>
Line 289: Line 291:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="col-sm-12">
 
                 <div class="col-sm-12">
                     <h1 id='overview'>Overview of the project</h1>
+
                     <h1 id='Overview'>Overview of the project</h1>
 
                     <p>We found that it is possible to convert the main component of poultry bile, CDCA(Chenodeoxycholic Acid), into UDCA, by employing two enzyme-catalyzed the reactions. First, two enzymes was employed to manage the transformation of CDCA to 7oxo-LCA. In the present of 7a-HSD(7alpha-hydroxysteroid dehydrogenase), CDCA is transformed in to 7oxo-LCA by loosing a pair of hydrogen(2H+ and 2e-), the pair of hydrogen is added to NAD+, the cofactor and the acceptor. The NAD+ is transformed into NADH during the reaction. To regenerate the NAD+ and recycle the reaction, to , the LDH(Lactate dehydrogenase) works on pyruvate and take the pair of hydrogen from NADH and transform the pyruvate to lactate and NADH to NAD+.</p>
 
                     <p>We found that it is possible to convert the main component of poultry bile, CDCA(Chenodeoxycholic Acid), into UDCA, by employing two enzyme-catalyzed the reactions. First, two enzymes was employed to manage the transformation of CDCA to 7oxo-LCA. In the present of 7a-HSD(7alpha-hydroxysteroid dehydrogenase), CDCA is transformed in to 7oxo-LCA by loosing a pair of hydrogen(2H+ and 2e-), the pair of hydrogen is added to NAD+, the cofactor and the acceptor. The NAD+ is transformed into NADH during the reaction. To regenerate the NAD+ and recycle the reaction, to , the LDH(Lactate dehydrogenase) works on pyruvate and take the pair of hydrogen from NADH and transform the pyruvate to lactate and NADH to NAD+.</p>
 
                     <p>In the second step, the 7oxo-LCA is transformed to UDCA by 7β-HSDH(7beta-hydroxysteroid dehydrogenase)and GDH(glutamate dehydrogenase).The 7β-HSDH works on 7oxo-LCA and take a pair of hydrogen from NADPH(the cofactor for the second step)and add it to 7oxo-LCA and form a beta position 7-hydroxyl group, which is our target product UDCA. The GDH works on glucose and take a pair of hydrogen from it and add it to the NADP+, to form NADPH to manage the regeneration of cofactor NADPH for the second step.</p>
 
                     <p>In the second step, the 7oxo-LCA is transformed to UDCA by 7β-HSDH(7beta-hydroxysteroid dehydrogenase)and GDH(glutamate dehydrogenase).The 7β-HSDH works on 7oxo-LCA and take a pair of hydrogen from NADPH(the cofactor for the second step)and add it to 7oxo-LCA and form a beta position 7-hydroxyl group, which is our target product UDCA. The GDH works on glucose and take a pair of hydrogen from it and add it to the NADP+, to form NADPH to manage the regeneration of cofactor NADPH for the second step.</p>
Line 297: Line 299:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="col-sm-12">
 
                 <div class="col-sm-12">
                     <h1 id='overview'>Our goal</h1>
+
                     <h1 id='Goal'>Our goal</h1>
 
                     <p>Our mission is to expression of the four enzymes 7α-HSDH (from ecoli DH5a), 7β-HSDH (from Ruminococcus Torques), GDH (from Bacillus subtilis), and LDH from (Lactobacillus delbruechii subsp. Bulgaricus)and test their activities. By adding the CBD( cellulose binding domain)sequnence to the plasmid we construct, we manage to bind our enzyme on gauze. This specific design excels in 3 specific ways: first, by controlling the presence of the gauze in the solution, we can control the process of the reaction. Second, when the target enzyme is bound to cellulose we manage to purify the protein we express. Third, the enzyme binding gauze is employed to a machine including the reaction efficiency measuring system and the enzyme addition controlling system .</p>
 
                     <p>Our mission is to expression of the four enzymes 7α-HSDH (from ecoli DH5a), 7β-HSDH (from Ruminococcus Torques), GDH (from Bacillus subtilis), and LDH from (Lactobacillus delbruechii subsp. Bulgaricus)and test their activities. By adding the CBD( cellulose binding domain)sequnence to the plasmid we construct, we manage to bind our enzyme on gauze. This specific design excels in 3 specific ways: first, by controlling the presence of the gauze in the solution, we can control the process of the reaction. Second, when the target enzyme is bound to cellulose we manage to purify the protein we express. Third, the enzyme binding gauze is employed to a machine including the reaction efficiency measuring system and the enzyme addition controlling system .</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
<!--
 
            <div class="row">
 
                <div class="col-sm-12">
 
                    <h2 id='cataract'>What are Cataracts?</h2>
 
                    <div class="row">
 
                        <div class="col-sm-6">
 
                            <p>
 
                                The lens is mostly made of proteins called crystallins. Crystallin proteins are normally
 
                                soluble, which keeps the lens clear and allows light entering the eye to focus. When
 
                                these proteins are damaged, they form insoluble clumps (Truscott, 2005). This causes the
 
                                clouding seen in cataractous lenses, which scatters light and in turn makes vision
 
                                blurry (Figure 1.1).
 
 
                            </p>
 
                        </div>
 
                        <figure class="col-sm-6">
 
                            <img src="https://static.igem.org/mediawiki/2016/f/ff/T--TAS_Taipei--Normal_vs_Cataract_Model_cropped.png">
 
                            <figcaption class='darkblue'><b>Figure 1.1. </b>Cataracts scatter light coming through the
 
                                lens, which blurs vision.
 
                            </figcaption>
 
                        </figure>
 
                    </div>
 
                    <br><br>
 
                    <div class="row">
 
                        <div class="col-sm-6">
 
                            <p>
 
                                Cataracts can be caused by many factors, including radiation and diabetes, but the
 
                                underlying cause is oxidative damage. Oxidative damage happens when unstable chemicals
 
                                containing oxygen react with DNA, lipids, or proteins, disrupting cellular functions
 
                                (Truscott, 2005). In the lens, crystallin proteins can be oxidized by hydrogen peroxide
 
                                (H₂O₂), which is a reactive molecule produced during aerobic respiration (Giorgio et
 
                                al., 2007). H₂O₂ reacts with protein residues and changes the shape of the protein. When
 
                                two cysteine residues on separate proteins are oxidized by H₂O₂, for example, they can
 
                                form a disulfide bond, which links these proteins together. The damaged proteins thus
 
                                aggregate and form clumps in the lens (Truscott, 2005) (Figure 1.2).
 
 
 
                            </p>
 
                        </div>
 
                        <figure class="col-sm-6">
 
                            <img src="https://static.igem.org/mediawiki/2016/9/92/T--TAS_Taipei--Oxidative_Damage.jpeg">
 
                            <figcaption class='darkblue'><b>Figure 1.2. </b>Oxidative damage by H₂O₂ can lead to
 
                                proteins misfolding, breaking apart, and clumping.
 
                            </figcaption>
 
                        </figure>
 
 
 
                    </div>
 
 
 
                    <br><br>
 
                    <div class="row">
 
                        <div class="col-sm-12">
 
                            <p>
 
                                <b>In the eye, a natural antioxidant called glutathione (GSH) exists,</b> which can
 
                                convert H₂O₂ into water (Giblin, 2000). With age, however, GSH levels decrease, and
 
                                oxidative damage caused by H₂O₂ increases. When there is more H₂O₂ in the lens than GSH
 
                                can remove, crystallins become damaged (Figure 1.3). When GSH levels are low, H₂O₂
 
                                starts to oxidize crystallins and cause cataracts. As lens cells age, they move towards
 
                                the nucleus and their GSH levels fall (Cvekl & Ashery-Padan, 2014), which may explain
 
                                why the older cells in the lens nucleus are more prone to developing cataracts
 
 
 
                            </p>
 
                        </div>
 
                    </div>
 
                    <br><br>
 
                    <div class="row">
 
                        <figure class="col-sm-7">
 
                            <img src="https://static.igem.org/mediawiki/2016/5/5d/T--TAS_Taipei--Antioxidant_Balance.jpeg">
 
                            <figcaption class='darkblue'><b>Figure 1.3.</b> Antioxidants protects proteins from
 
                                oxidative damage by H₂O₂ (left). When antioxidant levels are low, H₂O₂ damages
 
                                crystallins and cataract develops (right).
 
                            </figcaption>
 
                        </figure>
 
                        <div class="col-sm-1"></div>
 
                        <figure class="col-sm-4">
 
                            <img src="https://static.igem.org/mediawiki/2016/6/6c/T--TAS_Taipei--New_vs_Old_Cells.jpeg">
 
                            <figcaption class='darkblue'><b>Figure 1.4.</b> Lens cells move towards the nucleus as they
 
                                mature. Older cells have less GSH and are more susceptible to oxidative damage by H₂O₂.
 
                            </figcaption>
 
                        </figure>
 
                    </div>
 
                    <br><br>
 
                    <div class="row">
 
                        <div class="col-sm-7">
 
                            <p>
 
                                The current standard treatment for cataracts is surgery, which replaces the cloudy lens
 
                                with a clear artificial lens. Surgery is effective, but like all surgeries, it is <b>invasive
 
                                and requires professional equipment and trained surgeons.</b> These requirements add to
 
                                the cost, which averages about $3,500 per eye in the US without insurance (Sigre, 2016),
 
                                and is the biggest obstacle to solving cataracts worldwide. Through literature research,
 
                                we found a molecule called 25-hydroxycholesterol (25HC) that can reverse protein
 
                                aggregation. We hope to use this as an alternative to surgery to treat cataracts.
 
 
                            </p>
 
                        </div>
 
                        <figure class="col-sm-5">
 
                            <img src="https://static.igem.org/mediawiki/2016/e/e2/T--TAS_Taipei--Surgery_Cataract.jpeg">
 
                            <figcaption class='darkblue' style="font-color:red"><b>Figure 1.5.</b> Our goal is to
 
                                replace surgery with noninvasive eye drops that prevent and treat cataracts.
 
                            </figcaption>
 
                        </figure>
 
                    </div>
 
 
                </div>
 
            </div>
 
 
            <br><br>
 
            <div class="row">
 
                <div class="col-sm-12">
 
                    <h3>Citations</h3>
 
                    <p>Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens
 
                        development. Development, 141(23), 4432-4447.
 
                    </p>
 
                    <br>
 
                    <p>Ganea, E. & Harding, J. J. (2006). Glutathione-related enzymes and the eye. Curr Eye Res., 31(1),
 
                        1–11
 
                    </p> <br>
 
                    <p>Giblin, F. J. (2000). Glutathione: a vital lens antioxidant. Journal of Ocular Pharmacology and
 
                        Therapeutics, 16(2), 121-135.
 
                    </p> <br>
 
                    <p>Giorgio, M., Trinei, M., Migliaccio, E., & Pelicci, P. (2007). Nature Reviews Molecular Cell
 
                        Biology, 8(9), 722-8.
 
                    </p> <br>
 
                    <p>Makley, L. N., McMenimen, K. A., DeVree, B. T., Goldman, J. W., McGlasson, B. N., Rajagopal, P.,
 
                        Dunyak, B.M., McQuade, T.J., Thompson, A.D., Sunahara, R., Klevit, R.E., Andley, U.P., and
 
                        Gestwicki, J.E. (2015). Pharmacological chaperone for α-crystallin partially restores
 
                        transparency in cataract models. Science, 350(6261), 674-677.
 
                    </p> <br>
 
                    <p>Michael, R., & Bron, A. J. (2011). The ageing lens and cataract: a model of normal and
 
                        pathological ageing. Philosophical Transactions of the Royal Society of London B: Biological
 
                        Sciences, 366(1568), 1278-1292.
 
                    </p> <br>
 
                    <p>National Eye Institute | Cataracts. (n.d.). Retrieved October 04, 2016, from
 
                        https://nei.nih.gov/eyedata/cataract
 
                    </p> <br>
 
                    <p>Segre L (2016, Sept. 21). Cataract surgery cost. Retrieved from
 
                        http://www.allaboutvision.com/conditions/cataract-surgery-cost.htm
 
                    </p> <br>
 
                    <p>Truscott, RJ (2005). Age-related nuclear cataract-oxidation is the key. Exp Eye Res., 80(5):
 
                        709-25.
 
                    </p> <br>
 
                    <p>World Health Organization | Priority eye diseases. (n.d.). Retrieved October 03, 2016, from
 
                        http://www.who.int/blindness/causes/priority/en/index1.html
 
                    </p> <br>
 
                    <p></p> <br> <br>
 
                </div>
 
            </div>
 
-->
 
 
 
         <br>
 
         <br>
 
         <br>
 
         <br>

Revision as of 10:01, 1 November 2017


Background - TAS Taipei iGEM Wiki

Background

Bear bile, one of the most famous animal drugs in Traditional Chinese Medicine (TCM), has been recorded in ancient Chinese medicine book as a significant method to treat hepatic and biliary disorders. UDCA, the effective ingredient of bear bile.Aside from the traditional use of bear bile in Chinese medicine, UDCA(ursodeoxycholic acid), the effective ingredient of bear bile acid, has a much larger pharmaceutical application. As well as the usage of UDCA in dissolving gallstone, its efficacy in primary biliary cirrhosis and primary sclerosing cholangitis (PSC) as an adjunct to medical therapy has been well established. Newer indications include its use in the management of chronic hepatitis, cirrhosis, post liver transplant rejection, graft-versus-host disease and acute viral hepatitis, where it not only relieves symptoms of cholestasis but also arrests ongoing hepatocyte necrosis. However, the increasing demand for bear bile has caused bears to be in an endangered state: bear poaching and illegal animal trade have greatly dwindled the number of the wild Asiatic black bear. Apart from that, bear bile farming industry in Asia extracts bile through “milking” from the bears, which is operated through surgically implanting a permanent catheter in the animal's gallbladder to obtain the drips. It is unquestionable that the bear bile farming process will lead to both physical and psychological damage in bears.

Purpose

To find substitute or alternative for bear bile farming, our team will be working on the biological synthesis of the main effective component of this important medicine, UDCA(Ursodeoxycholic Acid). This biological approach will not only be more efficient but also be cheaper than the original chemical approach, which is widely used in the current UDCA synthesis industry.

Overview of the project

We found that it is possible to convert the main component of poultry bile, CDCA(Chenodeoxycholic Acid), into UDCA, by employing two enzyme-catalyzed the reactions. First, two enzymes was employed to manage the transformation of CDCA to 7oxo-LCA. In the present of 7a-HSD(7alpha-hydroxysteroid dehydrogenase), CDCA is transformed in to 7oxo-LCA by loosing a pair of hydrogen(2H+ and 2e-), the pair of hydrogen is added to NAD+, the cofactor and the acceptor. The NAD+ is transformed into NADH during the reaction. To regenerate the NAD+ and recycle the reaction, to , the LDH(Lactate dehydrogenase) works on pyruvate and take the pair of hydrogen from NADH and transform the pyruvate to lactate and NADH to NAD+.

In the second step, the 7oxo-LCA is transformed to UDCA by 7β-HSDH(7beta-hydroxysteroid dehydrogenase)and GDH(glutamate dehydrogenase).The 7β-HSDH works on 7oxo-LCA and take a pair of hydrogen from NADPH(the cofactor for the second step)and add it to 7oxo-LCA and form a beta position 7-hydroxyl group, which is our target product UDCA. The GDH works on glucose and take a pair of hydrogen from it and add it to the NADP+, to form NADPH to manage the regeneration of cofactor NADPH for the second step.

Our goal

Our mission is to expression of the four enzymes 7α-HSDH (from ecoli DH5a), 7β-HSDH (from Ruminococcus Torques), GDH (from Bacillus subtilis), and LDH from (Lactobacillus delbruechii subsp. Bulgaricus)and test their activities. By adding the CBD( cellulose binding domain)sequnence to the plasmid we construct, we manage to bind our enzyme on gauze. This specific design excels in 3 specific ways: first, by controlling the presence of the gauze in the solution, we can control the process of the reaction. Second, when the target enzyme is bound to cellulose we manage to purify the protein we express. Third, the enzyme binding gauze is employed to a machine including the reaction efficiency measuring system and the enzyme addition controlling system .