Difference between revisions of "Team:Newcastle/Results"

Line 1,049: Line 1,049:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
           <p>The deGFP sequence was taken from the Addgene database (Plasmid #40019). The sequence was found to have no illegal restriction sites (i.e. no EcoRI, XbaI, SpeI, or PstI sites). A strong, standard Anderson promoter (J23100) and RBS (B0034) was added before the deGFP sequence with biobrick scar sites between each part. A double terminator (B0015) was added after the deGFP sequence. The entire construct was flanked by 30 bp overhangs with the pSB1C3 plasmid, such that the construct could be Gibson assembled into a plasmid digested with XbaI and SpeI. Extra bases were added between the overhangs and the construct so that once the part was assembled into the plasmid, the XbaI and SpeI sites could be regenerated and the biobrick prefix and suffix restored. This construct (J23100-deGFP) with the overhangs was submitted to IDT for synthesis as a gBlock.</p>
+
           <p>The deGFP sequence was taken from the Addgene database (Plasmid #40019). The sequence was found to have no illegal restriction sites (i.e. no EcoRI, XbaI, SpeI, or PstI sites). A strong, standard Anderson promoter (J23100) and RBS (B0034) was added before the deGFP sequence with biobrick scar sites between each part. A double terminator (B0015) was added after the deGFP sequence. The entire construct was flanked by 30 bp overhangs with the pSB1C3 plasmid, such that the construct could be Gibson assembled into a pSB1C3 plasmid digested with XbaI and SpeI (Figure 1). Extra bases were added between the overhangs and the construct so that once the part was assembled into the plasmid, the XbaI and SpeI sites could be regenerated and the biobrick prefix and suffix restored. This construct (J23100-deGFP) with the overhangs was submitted to IDT for synthesis as a gBlock.</p>
 
+
          <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
+
          <p>The J23100-deGFP construct (Figure 1) described above was Gibson assembled into a pSB1C3 plasmid using the NEB Hi-Fi assembly kit. To do this, pSB1C3 was <a href="https://static.igem.org/mediawiki/2017/1/13/T--Newcastle--digest.pdf">digested with XbaI and SpeI to create a linearised plasmid backbone</a>. The deGFP gBlock DNA was prepared according to the <a href="https://static.igem.org/mediawiki/2017/3/38/T--Newcastle--gBlock-HiFi.pdf">IDT protocol</a> and assembled into the linear plasmid backbone according to the <a href="https://static.igem.org/mediawiki/2017/3/38/T--Newcastle--gBlock-HiFi.pdf">NEB Hi-Fi Protocol</a>. The assembly mixture was then <a href="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--ecoli_transformation_bb.pdf">transformed</a> into commercial DH5α cells and incubated on chloramphenicol plates overnight. Colonies which were green under UV light were picked and grown in 5 mL LB broth <a href="https://static.igem.org/mediawiki/2017/7/73/T--Newcastle--cultures.pdf">overnight</a> before undergoing plasmid extraction [PROTOCOL]. DNA samples were then sent for sequencing to ensure that the construct was correct [DOWNLOAD LINK].</p>
+
  
  
Line 1,061: Line 1,058:
 
</div>
 
</div>
 
</center>
 
</center>
 +
<br />
 +
 +
 +
 +
          <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 +
          <p>The J23100-deGFP construct described above was Gibson assembled into a pSB1C3 plasmid using the NEB Hi-Fi assembly kit. To do this, pSB1C3 was <a href="https://static.igem.org/mediawiki/2017/1/13/T--Newcastle--digest.pdf">digested with XbaI and SpeI to create a linearised plasmid backbone</a>. The deGFP gBlock DNA was prepared according to the <a href="https://static.igem.org/mediawiki/2017/3/38/T--Newcastle--gBlock-HiFi.pdf">IDT protocol</a> and assembled into the linear plasmid backbone according to the <a href="https://static.igem.org/mediawiki/2017/3/38/T--Newcastle--gBlock-HiFi.pdf">NEB Hi-Fi Protocol</a>. The assembly mixture was then <a href="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--ecoli_transformation_bb.pdf">transformed</a> into commercial DH5α cells and incubated on chloramphenicol plates overnight. Colonies which were green under UV light were picked and grown in 5 mL LB broth <a href="https://static.igem.org/mediawiki/2017/7/73/T--Newcastle--cultures.pdf">overnight</a> before undergoing plasmid extraction [PROTOCOL]. Successful insertion of the J23100-deGFP construct into pSB1C3 was confirmed through a restriction digest with EcoRI and PstI followed by gel electrophoresis [PROTOCOL]. Figure 2 shows that the insert was successfully inserted as the double digest resulted in two linear bands at ~2100 bp (linear plasmid) and ~800 bp (deGFP). The DNA samples were then sent for sequencing to ensure that the construct was correct [DOWNLOAD LINK].</p>
 +
 +
 +
<center>
 +
<div>
 +
<img src="https://static.igem.org/mediawiki/2017/0/0e/T--Newcastle--BB_deGFP_Gel.png" width="400px;" class="img-fluid border border-dark rounded mx-auto d-block" style="background-color:white; margin-right: 2%; margin-bottom: 2%;" alt=""/>
 +
<p class="legend"><center><strong>Figure 2:</strong> Restricition digest gel of BBa_K2205002 in pSB1C3. Plasmid DNA was digested with EcoRI and PstI. The digest mixture was then analysed on an agarose gel with NEB 1KB ladder. Fragments were visulaised at ~2100 bp (lineraised pSB1C3), and at ~800 bp (BBa_K2205002 insert). </center></p>
 +
</div>
 +
</center>
 +
<br />
  
  

Revision as of 12:48, 1 November 2017

spacefill

Our Experimental Results


Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!