Difference between revisions of "Team:BostonU/Model"

 
Line 226: Line 226:
 
</div></div>
 
</div></div>
 
<div id="panel1" class="link-slideup">
 
<div id="panel1" class="link-slideup">
   <p class="body-type mainwrap">Currently, there is not yet a defined relationship between the concentration of DNA added to the cell-free system and protein expression as well as the maximum amount of DNA that the system can handle. Part of this is due to the variety in capabilities of a particular ‘batch’ of cell-free, even if the same protocol is used. Modeling this relationship allows us to maximize expression when performing experiments that use many different pieces of interacting DNA; such as in later tests where a plasmid containing a toehold switch driving a recombinase interacts with a reporter plasmid. </p>
+
   <p class="body-type mainwrap">Initially, there was not a defined relationship between the concentration of DNA added to the cell-free batches we made and protein expression. The maximum amount of DNA that our in-house cell free can handle was also undefined. Part of this is due to the variety in capabilities of a particular ‘batch’ of cell-free, even if the same protocol is used. Modeling this relationship allows us to maximize expression when performing experiments that use many different pieces of interacting DNA; such as in later tests where a plasmid containing a toehold switch driving a recombinase interacts with a reporter plasmid. </p>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
  <p class="body-type mainwrap">We collected data on the fluorescence from a plasmid containing constitutive deGFP. The plasmid was added to the cell free reaction at 10 nM, 20 nM, 30 nM, and 40 nM. There was also a reaction with no DNA. The resulting data can be seen in Figure 1. </p>
 
  <p class="body-type mainwrap">We collected data on the fluorescence from a plasmid containing constitutive deGFP. The plasmid was added to the cell free reaction at 10 nM, 20 nM, 30 nM, and 40 nM. There was also a reaction with no DNA. The resulting data can be seen in Figure 1. </p>

Latest revision as of 17:09, 1 November 2017

MODELING