Difference between revisions of "Team:SJTU-BioX-Shanghai/Signal Pathway"

Line 102: Line 102:
 
                         <p>Our model helps describe intracellular interactions of our multifactorial visualized detection system. We also use it to analyze and evaluate our synthetic biology system. The model was built using Simbiology, a MATLAB toolbox.</p>
 
                         <p>Our model helps describe intracellular interactions of our multifactorial visualized detection system. We also use it to analyze and evaluate our synthetic biology system. The model was built using Simbiology, a MATLAB toolbox.</p>
 
<p>From these figures, we find several typical patterns of species variation. And the result(链接) of our experiments also fits these patterns well.</p>
 
<p>From these figures, we find several typical patterns of species variation. And the result(链接) of our experiments also fits these patterns well.</p>
 +
                        <p>Pathway Illustration:</p>
 +
                        <div class="figure-intro">
 +
                            <img src="https://static.igem.org/mediawiki/2017/0/04/T--SJTU-BioX-Shanghai--17y20.png" class="img-fluid">
 +
                            <div class="figure-text"><strong>Figure1: Signal Pathway construct</strong>Inducers enters the cell, activates receptor and binding with repressor protein, leading to antisense producing. Then antisense binds with STAR. Finally sfGFP expression starts.</div>
 +
                        </div>
 +
                        <p>Simulation Results:</p>
 +
                        <div class="figure-intro">
 +
                            <img src="https://static.igem.org/mediawiki/2017/8/8f/T--SJTU-BioX-Shanghai--17yy21.png" class="img-fluid">
 +
                            <div class="figure-text"><strong>Figure2: sfGFP degradation over time.</strong></div>
 +
                        </div>
 +
                        <div class="figure-intro">
 +
                            <img src="https://static.igem.org/mediawiki/2017/9/90/T--SJTU-BioX-Shanghai--17yy20.png" class="img-fluid">
 +
                            <div class="figure-text"><strong>Figure3: antiSTAR1 variation over time.</strong></div>
 +
                        </div>
 +
                        <div class="figure-intro">
 +
                            <img src="https://static.igem.org/mediawiki/2017/1/14/T--SJTU-BioX-Shanghai--17yy23.png" class="img-fluid">
 +
                            <div class="figure-text"><strong>Figure4: STAR & STAR_complex variation over time.</strong></div>
 +
                        </div>
 +
 +
                        <p>From these figures, we find several typical patterns of species variation. And the result(链接) of our experiments also fits these patterns well.</p>
  
 
                     </div>
 
                     </div>

Revision as of 17:34, 1 November 2017

Signal Pathway
Signal Pathway Model

Our model helps describe intracellular interactions of our multifactorial visualized detection system. We also use it to analyze and evaluate our synthetic biology system. The model was built using Simbiology, a MATLAB toolbox.

From these figures, we find several typical patterns of species variation. And the result(链接) of our experiments also fits these patterns well.

Pathway Illustration:

Figure1: Signal Pathway constructInducers enters the cell, activates receptor and binding with repressor protein, leading to antisense producing. Then antisense binds with STAR. Finally sfGFP expression starts.

Simulation Results:

Figure2: sfGFP degradation over time.
Figure3: antiSTAR1 variation over time.
Figure4: STAR & STAR_complex variation over time.

From these figures, we find several typical patterns of species variation. And the result(链接) of our experiments also fits these patterns well.