Difference between revisions of "Template:Team:Utrecht/MainBody"

Line 763: Line 763:
 
<script id="page-home" type="text/template"><!--
 
<script id="page-home" type="text/template"><!--
 
<div class="page-heading">The OUTCASST two-component system</div>
 
<div class="page-heading">The OUTCASST two-component system</div>
This year, Utrecht University participates in the iGEM for the first time.  
+
This year is the debut year for the Utrecht University iGEM team. Our team has developed an easy to use and cheap DNA detection kit for disease diagnosis in areas of the world where advanced diagnostic technologies are not available. We call our system ‘OUTCASST’, which stands for ‘Out-of-cell Crispr-Activated Sequence-specific Signal Transducer’.
We aim to create a cheap DNA detection kit for disease diagnosis that is easy to use and does not rely on complicated sequencing technologies.  
+
We call our system ‘OUTCASST’, which stands for ‘Out-of-cell Crispr-Activated Sequence-specific Signal Transducer’.
+
 
 
 
<br />
 
<br />
Line 778: Line 776:
 
<h2 class="subhead" id="subhead-2">The problem</h2>
 
<h2 class="subhead" id="subhead-2">The problem</h2>
 
Disease diagnosis is of great importance for healthcare.  
 
Disease diagnosis is of great importance for healthcare.  
In developing countries, diagnoses are often based on limited information, even though accurate disease determination based on pathogen specific DNA is possible through sequencing technologies. These technologies, however, require specialised equipment and expertise that simply is not available everywhere.  
+
In developing countries, diagnoses are often based on limited information, even though accurate disease determination based on pathogen specific DNA is possible through sequencing technologies. These technologies, however, require specialised equipment and expertise that simply is not available in developing parts of the world.  
With the OUTCASST two-component system and detection kit, we hope to alleviate this problem.
+
The OUTCASST two-component system and detection kit was designed to alleviate this problem.
  
 
<center>
 
<center>
Line 833: Line 831:
 
 
 
<h2 class="subhead" id="subhead-3">The system</h2>
 
<h2 class="subhead" id="subhead-3">The system</h2>
The OUTCASST two-component system consists of two proteins that span the membrane.  
+
The OUTCASST two-component system consists of two synthetic receptors that span the membrane.  
 
One of the proteins has a Cas9 protein attached as an extracellular domain, the other has a Cpf1 protein attached.  
 
One of the proteins has a Cas9 protein attached as an extracellular domain, the other has a Cpf1 protein attached.  
 
Both proteins can be given a guide RNA that makes them bind to a specific, user-chosen, complementary sequence.  
 
Both proteins can be given a guide RNA that makes them bind to a specific, user-chosen, complementary sequence.  
When both proteins bind a single DNA fragment from a sample, possibly containing pathogen DNA, they co-localize, so that a protease releases a transcription factor which then induces an intracellular reporter mechanism, resulting in a stained or fluorescent cell.
+
When both proteins bind a single DNA fragment from a sample, possibly containing pathogen DNA, they co-localize, so that a protease releases a transcription factor which then induces an intracellular reporter mechanism such as a luminescent or fluorescent signal.
 +
<br><br>
 +
A final product would include the use of so-called anhydrobiotic insect <i>Polypedilum vanderplanki</i> cells, which can be air-dried, allowing them to be stored for prolonged periods of time at room temperature. The OUTCASST system is cheap to produce, store and ship, and requires nothing more then a simple microscope as a readout.
 
 
 
<script type="text/javascript" language="JavaScript">
 
<script type="text/javascript" language="JavaScript">
Line 2,149: Line 2,149:
 
<script id="page-outreach" type="text/template">
 
<script id="page-outreach" type="text/template">
 
<div class="page-heading">Outreach</div>
 
<div class="page-heading">Outreach</div>
Science can have an impact on the world in many ways. With our project, we are not only trying to make a difference by creating a diagnostic tool, but by reaching out to the public we hope to make science accessible for everyone as well. We tried to achieve this by collaborating with ‘de Kennis van Nu’, a platform of the Dutch national public broadcasting corporation that brings different scientific themes to the general public in an understandable way. They aim to make science accessible to everyone, old and young, and encourage everyone to be curious and bring out the scientist in themselves!  
+
Science impacts the world in many ways. With our project, we are not only aiming to make a difference by creating a diagnostic tool, but also to reach out to the public to create awareness and make science accessible for everyone. We collaborated with ‘de Kennis van Nu’, a well-known national TV program and internet platform that brings different scientific themes to the general public in an understandable way. They aim to make science accessible to everyone, old and young, and encourage everyone to be curious and bring out the scientist in themselves!  
 
On their platform, we explain the formation of Utrecht’s very first team, our design and how we are trying to solve healthcare problems.  
 
On their platform, we explain the formation of Utrecht’s very first team, our design and how we are trying to solve healthcare problems.  
 
Through our whole iGEM experience, they follow us from lab bench to Boston. Their special about our team can be found <a target=_BLANK href="https://dekennisvannu.nl/site/special/iGEM-2017-studenten-ontwerpen-nieuw-leven/111#!/" class="url_external">here</a>.
 
Through our whole iGEM experience, they follow us from lab bench to Boston. Their special about our team can be found <a target=_BLANK href="https://dekennisvannu.nl/site/special/iGEM-2017-studenten-ontwerpen-nieuw-leven/111#!/" class="url_external">here</a>.

Revision as of 00:42, 2 November 2017

<!DOCTYPE html>

Cas9 & Cpf1 secretion
and activity
Comparison of endonuclease activity for Cas9 and Cpf1 that has been produced in, and excreted by, HEK293 cells.
MESA two-component system replication
Details on the MESA two-component system, explanation of its relation to our design and the results of its reproduction.
OUTCASST system production
Detailed explanation of the OUTCASST mechanism, experimental progress and technical prospects.
Modeling and
mathematics
Ordinary differential equations, cellular automaton and an object based model for optimal linker-length estimation.
InterLab study participation
Results and details of our measurements for the iGEM 2017 InterLab Study.
Stakeholders & opinions
Interviews and dialogues with stakeholders, potential users, third parties and experts relating to pathogen detection or DNA-based diagnostics.
Risks & safety-issues
Implications and design considerations relating to safety in the usage and implementation of OUTCASST as a diagnostics tool.
Design & integration
OUTCASST toolkit and product design with factors such as bio-safety and user-friendliness taken into account.
Outreach
Videos we made for the dutch public, together with 'de Kennis van Nu'.
Meet our team
About us, our interests and roles in the team and our supervisors.
Sponsors
A listing of our sponsors, how they assisted us and our gratitude for their assistance.
Collaborations
Read about our exchanges with other iGEM teams and government agencies.
Achievements
A short description of all that we have achieved during our participation in the iGEM.
Attributions
A thank-you for everyone that assited us, both in and outside the lab.