Line 37: | Line 37: | ||
<p style="font-family: quicksand;font-size:150%;">Background </p> | <p style="font-family: quicksand;font-size:150%;">Background </p> | ||
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
− | According to Green <i>et al.</i> (2014) [1], the optimal length of RNA to be detected by a toehold switch is around 30 bp (complementary region at below figure). In other words, a target RNA with 1000 bp in length can have 970 possible switches with different performance, which is governed by their structures and thermodynamic parameters. We aim at providing a workflow and platform of modeling to help users design the switches by reducing the manual processing and increasing the hit-rate of finding a good switch. | + | According to Green <i>et al.</i> (2014) [1], the optimal length of RNA to be detected by a toehold switch is around 30 bp (complementary region at below figure). In other words, a target RNA with 1000 bp in length can have 970 possible switches with different performance, which is governed by their structures and thermodynamic parameters. <strong>We aim at providing a workflow and platform of modeling to help users design the switches by reducing the manual processing and increasing the hit-rate of finding a good switch.</strong> |
+ | |||
<br> | <br> | ||
<br> | <br> | ||
Line 84: | Line 85: | ||
<br> | <br> | ||
<p style="font-family: roboto;font-size:130%;"><center>Switch RNA + Trigger RNA ↔ Switch-Trigger Duplex</center></p> | <p style="font-family: roboto;font-size:130%;"><center>Switch RNA + Trigger RNA ↔ Switch-Trigger Duplex</center></p> | ||
− | |||
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
Consequently, increased equilibrium concentrations of the switch-trigger duplex RNA would provide an increased number of active mRNAs for the translation of the reporter RFP. | Consequently, increased equilibrium concentrations of the switch-trigger duplex RNA would provide an increased number of active mRNAs for the translation of the reporter RFP. | ||
Line 103: | Line 103: | ||
<p style="font-family: quicksand;font-size:150%;">Screening by our software</p> | <p style="font-family: quicksand;font-size:150%;">Screening by our software</p> | ||
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
− | To minimize the manpower on screening of the switches, we constructed an online toehold switch design program. Apart from basic thermodynamic parameters, it also screens for other factors(please visit our <a href="https://2017.igem.org/Team:Hong_Kong-CUHK/Software"> software page </a>. Ultimately, the program generated a list of possible toehold switch sequences according to many different free energy parameters using the <a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/barriers.cgi">ViennaRNA package</a>[2]. The graph below shows 394 possible H5 toehold switches generated by our software. The assumptions motioned earlier stated 3 very important parameters for the selection of switch candidates with the greatest possible performances: Switch MFE, ΔG<sub>RBS-linker</sub>, and ΔMFE. We applied these parameters to our switch selection process: We first chose the switches that with the highest ΔG<sub>RBS-linker</sub> (-3.8 kcal/mol). Among those switches, we chose the 3 switches with the lowest switch MFE and the highest ΔMFE. | + | To minimize the manpower on screening of the switches, we constructed an online toehold switch design program. Apart from basic thermodynamic parameters, it also screens for other factors(please visit our <a href="https://2017.igem.org/Team:Hong_Kong-CUHK/Software"> software page </a>. Ultimately, the program generated a list of possible toehold switch sequences according to many different free energy parameters using the <a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/barriers.cgi">ViennaRNA package</a> [2]. The graph below shows 394 possible H5 toehold switches generated by our software. The assumptions motioned earlier stated 3 very important parameters for the selection of switch candidates with the greatest possible performances: Switch MFE, ΔG<sub>RBS-linker</sub>, and ΔMFE. We applied these parameters to our switch selection process: We first chose the switches that with the highest ΔG<sub>RBS-linker</sub> (-3.8 kcal/mol). Among those switches, we chose the 3 switches with the lowest switch MFE and the highest ΔMFE. |
</p> | </p> | ||
<p>Figure 2: ΔG<sub>RBS-linker</sub> of switch candidates generated from an example RNA sequence input by our software</p> | <p>Figure 2: ΔG<sub>RBS-linker</sub> of switch candidates generated from an example RNA sequence input by our software</p> | ||
Line 327: | Line 327: | ||
Toehold domain must have minimal paired bases in the switch RNA to ensure the successful binding of this domain with the complementary sequence in the trigger RNA, which allows the unwinding of the switch RNA and permits translation of the reporter protein, RFP, to occur. </p> | Toehold domain must have minimal paired bases in the switch RNA to ensure the successful binding of this domain with the complementary sequence in the trigger RNA, which allows the unwinding of the switch RNA and permits translation of the reporter protein, RFP, to occur. </p> | ||
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
− | Our program can only calculate the structure with the minimal free energy (MFE) for each target RNA region to reduce calculation workload. In reality, different conformations of RNAs with the same sequence co-exist in solution, and the concentrations of those populations are determined by their structures and free energy. Therefore, we manually checked the predicted structures and equilibrium concentrations of the ten suboptimal structures of each influenza switches with the lowest MFEs on the web tool developed by <a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/barriers.cgi">ViennaRNA package</a>[2]. Then we predicted the performance of each influenza switches and compared with the experimental results.</p> | + | Our program can only calculate the structure with the minimal free energy (MFE) for each target RNA region to reduce calculation workload. In reality, different conformations of RNAs with the same sequence co-exist in solution, and the concentrations of those populations are determined by their structures and free energy. Therefore, we manually checked the predicted structures and equilibrium concentrations of the ten suboptimal structures of each influenza switches with the lowest MFEs on the web tool developed by <a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/barriers.cgi">ViennaRNA package</a> [2]. Then we predicted the performance of each influenza switches and compared with the experimental results.</p> |
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
The table below shows the different suboptimal structures of each switch RNA sequence:</p> | The table below shows the different suboptimal structures of each switch RNA sequence:</p> | ||
Line 364: | Line 364: | ||
<td>H5-1</td> | <td>H5-1</td> | ||
<td><font color="red">1, 6, 7,</font> <font color="green">2</font></td> | <td><font color="red">1, 6, 7,</font> <font color="green">2</font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>11.676366 ( | + | <td>11.676366 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 372: | Line 372: | ||
<td>H5-2</td> | <td>H5-2</td> | ||
<td><font color="red">1, 2, 3, 4,</font> <font color="green">5</font></td> | <td><font color="red">1, 2, 3, 4,</font> <font color="green">5</font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>38.24207 ( | + | <td>38.24207 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 387: | Line 387: | ||
− | <td> | + | <td>Low</td> |
<td>13.34770467 (low)</td> | <td>13.34770467 (low)</td> | ||
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 395: | Line 395: | ||
<td>H7-1</td> | <td>H7-1</td> | ||
<td><font color="red">1, 2, 3, 4</font> <font color="green"></font></td> | <td><font color="red">1, 2, 3, 4</font> <font color="green"></font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>10.82038167 ( | + | <td>10.82038167 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 403: | Line 403: | ||
<td>H7-2</td> | <td>H7-2</td> | ||
<td><font color="red">1, 3,</font> <font color="green">2, 7</font></td> | <td><font color="red">1, 3,</font> <font color="green">2, 7</font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>8.577606333 ( | + | <td>8.577606333 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 411: | Line 411: | ||
<td>H7-3</td> | <td>H7-3</td> | ||
<td><font color="red"></font> <font color="green">1, 2</font></td> | <td><font color="red"></font> <font color="green">1, 2</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>637.066 ( | + | <td>637.066 (High)</td> |
− | <td> | + | <td>True Positive</td> |
</tr> | </tr> | ||
Line 419: | Line 419: | ||
<td>N1-1</td> | <td>N1-1</td> | ||
<td><font color="red"></font> <font color="green">1, 2</font></td> | <td><font color="red"></font> <font color="green">1, 2</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>204.7757333 ( | + | <td>204.7757333 (High)</td> |
− | <td> | + | <td>True Positive</td> |
</tr> | </tr> | ||
Line 427: | Line 427: | ||
<td>N1-2</td> | <td>N1-2</td> | ||
<td><font color="red">1, 2</font> <font color="green"></font></td> | <td><font color="red">1, 2</font> <font color="green"></font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>9.325934 ( | + | <td>9.325934 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 435: | Line 435: | ||
<td>N1-3</td> | <td>N1-3</td> | ||
<td><font color="red"></font> <font color="green">1, 2</font></td> | <td><font color="red"></font> <font color="green">1, 2</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>9.148810667 ( | + | <td>9.148810667 (Low)</td> |
− | <td> | + | <td><em>False Positive</em></td> |
</tr> | </tr> | ||
Line 443: | Line 443: | ||
<td>N9-1</td> | <td>N9-1</td> | ||
<td><font color="red"></font> <font color="green">1, 2, 3</font></td> | <td><font color="red"></font> <font color="green">1, 2, 3</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>166.49639 ( | + | <td>166.49639 (High)</td> |
− | <td> | + | <td>True Positive</td> |
</tr> | </tr> | ||
Line 451: | Line 451: | ||
<td>N9-2</td> | <td>N9-2</td> | ||
<td><font color="red"></font> <font color="green">1, 2, 6</font></td> | <td><font color="red"></font> <font color="green">1, 2, 6</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>604.2225333 ( | + | <td>604.2225333 (High)</td> |
− | <td> | + | <td>True Positive</td> |
</tr> | </tr> | ||
Line 459: | Line 459: | ||
<td>N9-3</td> | <td>N9-3</td> | ||
<td><font color="red"></font> <font color="green">1</font></td> | <td><font color="red"></font> <font color="green">1</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>10.587811 ( | + | <td>10.587811 (Low)</td> |
− | <td> | + | <td><em>False Positive</em></td> |
</tr> | </tr> | ||
Line 467: | Line 467: | ||
<td>PB2-1</td> | <td>PB2-1</td> | ||
<td><font color="red"></font> <font color="green">1, 2</font></td> | <td><font color="red"></font> <font color="green">1, 2</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>8.756591333 ( | + | <td>8.756591333 (Low)</td> |
− | <td> | + | <td><em>False Positive</em></td> |
</tr> | </tr> | ||
Line 475: | Line 475: | ||
<td>PB2-2</td> | <td>PB2-2</td> | ||
<td><font color="red">1, 3</font> <font color="green"></font></td> | <td><font color="red">1, 3</font> <font color="green"></font></td> | ||
− | <td> | + | <td>Low</td> |
− | <td>24.68932333 ( | + | <td>24.68932333 (Low)</td> |
− | <td> | + | <td>True Negative</td> |
</tr> | </tr> | ||
Line 483: | Line 483: | ||
<td>PB2-3</td> | <td>PB2-3</td> | ||
<td><font color="red"></font> <font color="green">1, 2, 3, 5</font></td> | <td><font color="red"></font> <font color="green">1, 2, 3, 5</font></td> | ||
− | <td> | + | <td>High</td> |
− | <td>368.0475667 ( | + | <td>368.0475667 (High)</td> |
− | <td> | + | <td>True Positive</td> |
</tr> | </tr> | ||
Line 499: | Line 499: | ||
<br> | <br> | ||
<br> | <br> | ||
− | In the table, each suboptimal structure is labelled by numbers 1 to 10, where structure 1 has the lowest free energy(the MFE structure), and structure 10 has the highest free energy. In the "Suboptimal structures" column, only suboptimal structures with non-negligible equilibrium concentrations are considered and shown. The equilibrium concentrations were calculated by the ViennaRNA | + | In the table, each suboptimal structure is labelled by numbers 1 to 10, where <em>structure 1 has the lowest free energy (the MFE structure)</em>, and <em>structure 10 has the highest </em> free energy. In the "Suboptimal structures" column, only suboptimal structures with non-negligible equilibrium concentrations are considered and shown. The equilibrium concentrations were calculated by the ViennaRNA web server [2]. |
<br> | <br> | ||
For example, for H5-3 switch: | For example, for H5-3 switch: | ||
Line 506: | Line 506: | ||
<br> | <br> | ||
− | We checked the status of the toehold domain for each suboptimal structure from the ViennaRNA | + | We checked the status of the toehold domain for each suboptimal structure from the ViennaRNA web server output [2] to see if it was open or closed. In the table, the structures with an open toehold domain are shown in <p style="color:green">green</p>, and ones with a closed toehold domain are shown in <p style="color:red">red</p>. |
<br> | <br> | ||
For example, for H5-3 switch: | For example, for H5-3 switch: | ||
Line 513: | Line 513: | ||
</p> | </p> | ||
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
− | The expected fluorescence(determined by the ratio of suboptimal structures with open/closed toehold domains) exhibited by E. coli | + | The expected fluorescence(determined by the ratio of suboptimal structures with open/closed toehold domains) exhibited by <i>E. coli</i> co-transformed with the switch and trigger RNA after 12 hours was compared with the actual observed fluorescence during the experiment.</p> |
<p style="font-family: roboto;font-size:115%;"> | <p style="font-family: roboto;font-size:115%;"> | ||
Line 552: | Line 552: | ||
<br> | <br> | ||
<br>References: | <br>References: | ||
− | <br>[1] Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: De-novo-designed regulators of gene expression. Cell. 2014;159(4):925–39. | + | <br>[1] Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: De-novo-designed regulators of gene expression. <i>Cell.</i> 2014;159(4):925–39. |
− | <br>[2] Hofacker IL. RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics [Internet]. 2009;Chapter 12:Unit12.2. Available from: | + | <br>[2] Hofacker IL. RNA secondary structure analysis using the Vienna RNA package. <i>Curr Protoc Bioinformatics [Internet]</i>. 2009;Chapter 12:Unit12.2. Available from: |
http://www.ncbi.nlm.nih.gov/pubmed/19496057 | http://www.ncbi.nlm.nih.gov/pubmed/19496057 | ||
− | <br>[3]J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, N. A. Pierce. NUPACK: analysis and design of nucleic acid systems. J | + | <br>[3]J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, N. A. Pierce. NUPACK: analysis and design of nucleic acid systems. <i>J Compute Chem</i>, 32:170–173, 2011. |
</section> | </section> |
Revision as of 02:52, 2 November 2017