Difference between revisions of "Team:USNA Annapolis/Description"

Line 316: Line 316:
 
<div class="link" id="Abstract"></div>
 
<div class="link" id="Abstract"></div>
 
         <h3> In The Beginning... <h3>
 
         <h3> In The Beginning... <h3>
         <h4> We followed the classic theme of design, build, test, model and repeat in the field of synthetic biology. Before starting our project, we first sat down and thought about what our focus for this years project would be. Since we were continuing our project from last year, we did some more research on the respiratory microbiome and Sodium Channels. And for those of you who are unfamiliar with what a microbiome is, a microbiome is  community of commensal and symbiotic microorganisms found in all multicellular organisms. These bacteria live among plants and animals and are crucial for immunologic, hormonal and metabolic homeostasis of their host. In order to redesign the construct, we needed to find a less complicated sense and response system than the Arc system, which we used last year.
+
         <h4> We followed the classic theme of design, build, test, model and repeat in the field of synthetic biology. Before starting our project, we first sat down and thought about what our focus for this years project would be. Since we were continuing our project from last year, we did some more research on the respiratory microbiome and Sodium Channels.  
 
</h4>
 
</h4>
  
Line 323: Line 323:
 
</article>
 
</article>
  
 +
<article>
 +
<div class="link" id="Abstract"></div>
 +
        <h4> And for those of you who are unfamiliar with what a microbiome is, a microbiome is  community of commensal and symbiotic microorganisms found in all multicellular organisms. These bacteria live among plants and animals and are crucial for immunologic, hormonal and metabolic homeostasis of their host. In order to redesign the construct, we needed to find a less complicated sense and response system than the Arc system, which we used last year.
 +
</h4>
  
 +
<img width="75%" src="https://static.igem.org/mediawiki/2017/d/d3/USNA_Annapolis-Microbiome.png" class="img-responsive">
 +
 +
</article>
  
  

Revision as of 03:12, 2 November 2017

Editing the Human Microbiome

Enhancing Our Environment

Our Project

MEW line: Mucosal Early Warning system

In The Beginning...

We followed the classic theme of design, build, test, model and repeat in the field of synthetic biology. Before starting our project, we first sat down and thought about what our focus for this years project would be. Since we were continuing our project from last year, we did some more research on the respiratory microbiome and Sodium Channels.

And for those of you who are unfamiliar with what a microbiome is, a microbiome is community of commensal and symbiotic microorganisms found in all multicellular organisms. These bacteria live among plants and animals and are crucial for immunologic, hormonal and metabolic homeostasis of their host. In order to redesign the construct, we needed to find a less complicated sense and response system than the Arc system, which we used last year.

Applications

The protein within the plasmid backbone of bacteria natural to the human microbiome could be used as a therapeutic drug to protect people from possible toxicants in the environment by sensing their harmful effects within biofilms and host cells or as a therapeutic drug to enhance someone’s natural microbiome by beneficial ionic responses with biofilm formation. For example, it could be taken and used to coat the insides of the respiratory tract to detect changes and prevent unregulated ion channels. This in turn could prevent serious bodily harm with minimal disturbance of ion balance/ biofilms and could enhance microbiome response overall.

  • Protective biofilms throughout your body
  • Bacteria communicate with each other and the host cells
  • Create a sensor for ions for cell to cell communications in a medically relevant way
  • Out on the battlefield and expect to be exposed
  • What’s the response from the respiratory tract
  • Cell-cell communication within biofilms and with the host using ions within the human body
  • Risks

    Our modified organism could pose the risk of environmental release, if applied to the human body. We will need to engineer in a kill-switch mechanism, or another self-destruct mechanism to control unintended proliferation.