Zhiling Zhou (Talk | contribs) |
Zhiling Zhou (Talk | contribs) |
||
Line 561: | Line 561: | ||
<p class="PP">This low effect is directly related to the defects of biocontrol. Microorganisms used in biocontrol(bio-agents) are a lot, including rhizospherebacteria, ectomycorrhiza fungi, and endophytes so on. Application for all of them faces two intractable problems.</p> | <p class="PP">This low effect is directly related to the defects of biocontrol. Microorganisms used in biocontrol(bio-agents) are a lot, including rhizospherebacteria, ectomycorrhiza fungi, and endophytes so on. Application for all of them faces two intractable problems.</p> | ||
− | <p class="PP"> | + | <p class="PP">As mentioned above, the cash crops beseem to large-scale intensive cultivation, and because of that, technologies of modern agriculture including automatic irrigation and unscrewed aerial vehicle remote sensing (UAVRS) are always applied in cultivating such crops to increase their productions. However, the current method to apply biocontrol in the farm is not consistent with the concept of modern agriculture, mainly showing at the following aspects.</p> |
− | <p class="PP">The | + | <p class="PP">The key point is the unknowable for applying biocontrol. People can’t know whether and when the diseases intruded, meanwhile, the resistance actions of bio-agents were totally out of control, People can do nothing but get the final result from the production variety of crops. Besides, the effects actually are limited. Taking Paecilomyces lilacinus as an example, it only inhabits some kinds of nematodes by secreting specific protease. And also it’s difficult to composite various bio-agents when preserve their respective advantages at the same time. We think applying biocontrol in such a blind way is very passive.</p> |
− | + | ||
<h2 id="aims" class="H2Head">Our Aims</h2> | <h2 id="aims" class="H2Head">Our Aims</h2> | ||
<p class="PP">ZJU-China 2017 aims to establish a system and the corresponding workflow for applying biocontrol in a more wide and controlled way, and the disease information can also be reported to the human at the same time, which means people can know the situation more accurately and timely. We decided to choose Trichoderma atroviride as the chassis for its widely used in present biocontrol menthods (See our decision-making process in <a class="cite" href="https://2017.igem.org/Team:ZJU-China/HP/Silver">HP Silver page</a>). And we chose tobaccos as our testing plants for its high status in cash crops(See our decision-making process in <a class="cite" href="https://2017.igem.org/Team:ZJU-China/HP/Gold_Integrated">HP Gold page</a>). Combined with the automation concept pursued by modern agriculture, our design is suitable for large-scale cultivation of crops. And we made a hardware to build a information communication between humans, hardware and bio-agents, which create a new direction in applying biocontrol. We believe it has very broad application prospects in unceasing developmental modern agriculture.</p> | <p class="PP">ZJU-China 2017 aims to establish a system and the corresponding workflow for applying biocontrol in a more wide and controlled way, and the disease information can also be reported to the human at the same time, which means people can know the situation more accurately and timely. We decided to choose Trichoderma atroviride as the chassis for its widely used in present biocontrol menthods (See our decision-making process in <a class="cite" href="https://2017.igem.org/Team:ZJU-China/HP/Silver">HP Silver page</a>). And we chose tobaccos as our testing plants for its high status in cash crops(See our decision-making process in <a class="cite" href="https://2017.igem.org/Team:ZJU-China/HP/Gold_Integrated">HP Gold page</a>). Combined with the automation concept pursued by modern agriculture, our design is suitable for large-scale cultivation of crops. And we made a hardware to build a information communication between humans, hardware and bio-agents, which create a new direction in applying biocontrol. We believe it has very broad application prospects in unceasing developmental modern agriculture.</p> |
Revision as of 03:28, 2 November 2017
Description
Background
As mentioned above, the cash crops beseem to large-scale intensive cultivation, and because of that, technologies of modern agriculture including automatic irrigation and unscrewed aerial vehicle remote sensing (UAVRS) are always applied in cultivating such crops to increase their productions. However, the current method to apply biocontrol in the farm is not consistent with the concept of modern agriculture, mainly showing at the following aspects.
The key point is the unknowable for applying biocontrol. People can’t know whether and when the diseases intruded, meanwhile, the resistance actions of bio-agents were totally out of control, People can do nothing but get the final result from the production variety of crops. Besides, the effects actually are limited. Taking Paecilomyces lilacinus as an example, it only inhabits some kinds of nematodes by secreting specific protease[1]. And also it’s difficult to composite various bio-agents when preserve their respective advantages at the same time. We think applying biocontrol in such a blind way is very passive.
Fig1: The picture shows the parallel roles played by enteric microorganism and endophytes
Problem
This low effect is directly related to the defects of biocontrol. Microorganisms used in biocontrol(bio-agents) are a lot, including rhizospherebacteria, ectomycorrhiza fungi, and endophytes so on. Application for all of them faces two intractable problems.
As mentioned above, the cash crops beseem to large-scale intensive cultivation, and because of that, technologies of modern agriculture including automatic irrigation and unscrewed aerial vehicle remote sensing (UAVRS) are always applied in cultivating such crops to increase their productions. However, the current method to apply biocontrol in the farm is not consistent with the concept of modern agriculture, mainly showing at the following aspects.
The key point is the unknowable for applying biocontrol. People can’t know whether and when the diseases intruded, meanwhile, the resistance actions of bio-agents were totally out of control, People can do nothing but get the final result from the production variety of crops. Besides, the effects actually are limited. Taking Paecilomyces lilacinus as an example, it only inhabits some kinds of nematodes by secreting specific protease. And also it’s difficult to composite various bio-agents when preserve their respective advantages at the same time. We think applying biocontrol in such a blind way is very passive.
Our Aims
ZJU-China 2017 aims to establish a system and the corresponding workflow for applying biocontrol in a more wide and controlled way, and the disease information can also be reported to the human at the same time, which means people can know the situation more accurately and timely. We decided to choose Trichoderma atroviride as the chassis for its widely used in present biocontrol menthods (See our decision-making process in HP Silver page). And we chose tobaccos as our testing plants for its high status in cash crops(See our decision-making process in HP Gold page). Combined with the automation concept pursued by modern agriculture, our design is suitable for large-scale cultivation of crops. And we made a hardware to build a information communication between humans, hardware and bio-agents, which create a new direction in applying biocontrol. We believe it has very broad application prospects in unceasing developmental modern agriculture.
See how we build up this system in the Demonstrate page.
Reference
[1] Brand D, Roussos S, Pandey A, et al. Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita.[J]. Applied Biochemistry & Biotechnology, 2004, 118(1-3):81-88.