Difference between revisions of "Team:Toronto/Analysis"

Line 30: Line 30:
 
<h2 class="text-yellow">Introduction</h2>
 
<h2 class="text-yellow">Introduction</h2>
 
         <p>Using the previously derived expressions from the ODE team we use the Mathworks Simulink package to derive solutions to our system for a range of parameters. </p>
 
         <p>Using the previously derived expressions from the ODE team we use the Mathworks Simulink package to derive solutions to our system for a range of parameters. </p>
 +
<<<<<<< HEAD
 +
<figure>
 +
<div class="figures">
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/8/88/T--Toronto--2017_simulation.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/8/8a/T--Toronto--2017_x2_light_on.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7a/T--Toronto--2017_x2_light_off.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/d/d3/T--Toronto--2017_lambda_light_on.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/3/39/T--Toronto--2017_lambda_light_off.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/f/ff/T--Toronto--2017_theta_light_on.svg" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7a/T--Toronto--2017_theta_light_off.svg" alt="data"></div>
 +
</div>
 +
</figure>
 +
=======
 +
>>>>>>> 2db16df32efc2a61c7badd0b827dc45212f17ce3
 
</div>
 
</div>
 
<div id ='b' class="subsection">
 
<div id ='b' class="subsection">
Line 120: Line 134:
 
</blockquote>
 
</blockquote>
 
<figure>
 
<figure>
 +
<<<<<<< HEAD
 +
<div class="figures">
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div>
 +
<div class="image"><img src="https://static.igem.org/mediawiki/2017/6/66/T--Toronto--2017_mcherr_reg_log.png" alt="data"></div>
 +
=======
 
  <div class="figures">
 
  <div class="figures">
 
    <div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div>
 
    <div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div>
Line 125: Line 144:
 
  </div>
 
  </div>
 
</figure>
 
</figure>
 +
>>>>>>> 2db16df32efc2a61c7badd0b827dc45212f17ce3
 
</div>
 
</div>
 +
</figure>
 
<div id ='a' class="subsection">
 
<div id ='a' class="subsection">
 
<h2 class="text-yellow">R Analysis</h2>
 
<h2 class="text-yellow">R Analysis</h2>
Line 156: Line 177:
 
</figure>
 
</figure>
 
</div>
 
</div>
 +
</div>
 +
</div>
 +
</div>
 
</html>
 
</html>
 
{{Toronto/footer}}
 
{{Toronto/footer}}

Revision as of 20:16, 23 November 2017

ODE

Introduction

Using the previously derived expressions from the ODE team we use the Mathworks Simulink package to derive solutions to our system for a range of parameters.

<<<<<<< HEAD
data
data
data
data
data
data
data
======= >>>>>>> 2db16df32efc2a61c7badd0b827dc45212f17ce3

ODE Solution

Solving:

data

Integrating Factor:

data

Multiplying both sides by our integrating factor:

data

R plots

// #reading data
table <- read_excel("C:/Users/Ali/Desktop/igem/Wiki Files/table2.xlsx")

#Vectorizing Data

time <- table$`RFU/OD600`[c(3:15)]

time <- as.numeric(time)


x1 <-table$X__1[c(3:15)]

x1 <- as.numeric(x1)


x2 <- table$X__2[c(3:15)]
x2 <- as.numeric(x2)


x3 <- table$X__3[c(3:15)]
x3 <- as.numeric(x3)

x <- c(x1,x2,x3)

time_ <- c(time,time,time)
#plotting data vs time
#plot(c(time,time,time), c(x1,x2,x3), xlab = 'Time', ylab = 'RFU/OD600')

#Transforming variable

log_x = log(x)



plot(c(time,time,time), log_x, xlab = 'Time', ylab = 'log(RFu/OD600)')

#regression model

fit <- lm(log(x) ~ c(time,time,time))

#regression information
summary(fit)


#graphing best fit line
abline(fit, col='red')


#orginal data points

plot(c(time,time,time), x, xlab='Time', ylab='RFu/OD600')

#transformed prediction line

time_val <- seq(min(time),max(time), by = 13/38)

#prediction
lm2 <- exp(predict(fit,list(time=time_val)))


#plotting prediction

lines(time_val, lm2[c(1:39)], col="red")
<<<<<<< HEAD
data
data
=======
data
data
>>>>>>> 2db16df32efc2a61c7badd0b827dc45212f17ce3

R Analysis

R Analysis:
Call:
lm(formula = log(x) ~ c(time, time, time))

Residuals:
     Min       1Q   Median       3Q      Max
-0.58853 -0.15536  0.01303  0.19867  0.44055

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)          2.87199    0.21773   13.19 1.47e-15 ***
c(time, time, time)  0.15267    0.01142   13.37 9.74e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2935 on 37 degrees of freedom
Multiple R-squared:  0.8285,	Adjusted R-squared:  0.8238
F-statistic: 178.7 on 1 and 37 DF,  p-value: 9.741e-16

				}

Intercept represents the equilibrium value of LacILov, our intercept:

data