Line 17: | Line 17: | ||
<div class="section"> | <div class="section"> | ||
<div class="container header" id="red"> | <div class="container header" id="red"> | ||
− | <h1> | + | <h1>Analysis</h1> |
</div> | </div> | ||
</div> | </div> | ||
Line 134: | Line 134: | ||
<div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div> | <div class="image"><img src="https://static.igem.org/mediawiki/2017/4/42/T--Toronto--2017_mcherry-reg-norm.png" alt="data"></div> | ||
<div class="image"><img src="https://static.igem.org/mediawiki/2017/6/66/T--Toronto--2017_mcherr_reg_log.png" alt="data"></div> | <div class="image"><img src="https://static.igem.org/mediawiki/2017/6/66/T--Toronto--2017_mcherr_reg_log.png" alt="data"></div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
</figure> | </figure> |
Revision as of 20:34, 23 November 2017
Analysis
Introduction
Using the previously derived expressions from the ODE team we use the Mathworks Simulink package to derive solutions to our system for a range of parameters.
ODE Solution
Solving:
Integrating Factor:
Multiplying both sides by our integrating factor:
R plots
// #reading data table <- read_excel("C:/Users/Ali/Desktop/igem/Wiki Files/table2.xlsx") #Vectorizing Data time <- table$`RFU/OD600`[c(3:15)] time <- as.numeric(time) x1 <-table$X__1[c(3:15)] x1 <- as.numeric(x1) x2 <- table$X__2[c(3:15)] x2 <- as.numeric(x2) x3 <- table$X__3[c(3:15)] x3 <- as.numeric(x3) x <- c(x1,x2,x3) time_ <- c(time,time,time) #plotting data vs time #plot(c(time,time,time), c(x1,x2,x3), xlab = 'Time', ylab = 'RFU/OD600') #Transforming variable log_x = log(x) plot(c(time,time,time), log_x, xlab = 'Time', ylab = 'log(RFu/OD600)') #regression model fit <- lm(log(x) ~ c(time,time,time)) #regression information summary(fit) #graphing best fit line abline(fit, col='red') #orginal data points plot(c(time,time,time), x, xlab='Time', ylab='RFu/OD600') #transformed prediction line time_val <- seq(min(time),max(time), by = 13/38) #prediction lm2 <- exp(predict(fit,list(time=time_val))) #plotting prediction lines(time_val, lm2[c(1:39)], col="red")
R Analysis
R Analysis: Call: lm(formula = log(x) ~ c(time, time, time)) Residuals: Min 1Q Median 3Q Max -0.58853 -0.15536 0.01303 0.19867 0.44055 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.87199 0.21773 13.19 1.47e-15 *** c(time, time, time) 0.15267 0.01142 13.37 9.74e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2935 on 37 degrees of freedom Multiple R-squared: 0.8285, Adjusted R-squared: 0.8238 F-statistic: 178.7 on 1 and 37 DF, p-value: 9.741e-16
Intercept represents the equilibrium value of LacILov, our intercept: