Line 355: | Line 355: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | <div id="ImpressumSponsoren"> | |
− | <img src="https://static.igem.org/mediawiki/2017/5/58/T%C3%BCbingen_Qiagen-Logo.jpeg" id="Quiagen" width= | + | <img src="https://static.igem.org/mediawiki/2017/5/58/T%C3%BCbingen_Qiagen-Logo.jpeg" id="Quiagen" width=70px> <img src="https://static.igem.org/mediawiki/2017/1/1c/T%C3%BCbingen_Roth-Logo.jpeg" id="Roth" width=70px> <img src="https://static.igem.org/mediawiki/2017/d/d8/TuebingenZymoLogo.jpeg" width=150px> <img src="https://static.igem.org/mediawiki/2017/5/5b/T%C3%BCbingen_Eurofins-Logo.png" id="eurofins" width=150px> <img src="https://static.igem.org/mediawiki/2017/e/e4/GATCTuebingen.png" id="GATC" width=150px> <img src="https://static.igem.org/mediawiki/2017/4/49/T%C3%BCbingen_NEB-Logo.jpeg" id="BioLabs" width=150px><br><img src="https://static.igem.org/mediawiki/2017/7/7c/T%C3%BCbingen_Greiner-Logo.jpeg" id="Greiner" width=150px> <img src="https://static.igem.org/mediawiki/2017/b/bf/T%C3%BCbingen_Agilent-Logo.jpeg" id="Agilent" width=150px> <img src="https://static.igem.org/mediawiki/2017/0/01/T%C3%BCbingen_abcr-Logo.png" id="abcr" width=150px> <img src="https://static.igem.org/mediawiki/2017/5/59/MicrosynthTuebingen.png" width=150px> <img src="https://static.igem.org/mediawiki/2017/8/8b/Eppendorftuebingen.png" width=150px> |
<div> <p> © iGEM Team Tuebingen 2017</p></div> | <div> <p> © iGEM Team Tuebingen 2017</p></div> | ||
Latest revision as of 12:42, 12 December 2017
Attributions
This year’s team was led by PD Dr. Bertolt Gust and PD Dr. Elisabeth Fuss. They provided the needed laboratory support and managed main communication within the university. The student team was coordinated and organized by Brian Weidensee and Nikolas Layer as student leaders; the original project idea was designed by PD Dr. Bertolt Gust and Nikolas Layer.
All student members participated in the project development with the special contribution in gene block and part design by Lukas Fuhs and Nikolas Layer.
For laboratory execution, we divided the project into three parts: The chemical synthesis was done by Alexandra Haake, Marcel Conrady, Madeleine Heep, and Michael Krummhaar. Lisa Dussling contributed the in-silico analysis and the bioinformatics model while Marcel Conrady, Lukas Fuhs, Madeleine Heep, Mirjam Gneiting, Milena Krach, and Michael Krummhaar were involved in cloning, biochemical analysis, and compound production.
Milena Krach, Brian Weidensee, and our intern Fan Zhang were responsible for procedure and data submission of the iGEM 2017 interlab study.
For our this year’s YouTube collaboration project we want to thank all participating iGEM teams and Hannah Brasse for the realization and organization. Hannah Brasse, Lukas Fuhs, Mirjam Gneiting, Madeleine Heep and Milena Krach produced our own video for the channel. All educational projects embedded in our Human Practice project were mainly organized by Vic-Fabienne Schumann and Brian Weidensee with the engagement of the whole student team with special thanks to Marcel Conrady, Madeleine Heep, Milena Krach and Brian Weidensee for supervision of our internship student Fan Zhang.
Our wiki’s structure was mainly designed by Mirjam Gneiting and Alexander Recktenwald; a working code was created and implemented by Alexander Recktenwald.
All wiki content was created and uploaded by Hannah Brasse, Marcel Conrady, Lisa Dussling, Mirjam Gneiting, Alexandra Haake, Madeleine Heep, Milena Krach, Michael Krummhaar, Nikolas Layer, Vic-Fabienne Schumann, and Brian Weidensee.
Without a lot of fundraising, none of our work would have been possible: Hannah Brasse, Alexandra Haake, Madeleine Heep, Milena Krach, Michael Krummhaar, Nikolas Layer, Vic-Fabienne Schumann and Brian Weidensee contributed to this area.
We want to especially thank Dr. H. Kalbacher for MALDI-TOF Analysis and crystallization experiments of our chemical compounds.
Acknowledgement
AG Prof. Dr. O. Kohlbacher - Hardware and in silico support
Prof. Dr. L.Heide - Clorobiocin Cluster and bacterial strains
AG Prof. Dr. D.Schwarzer - chemical synthesis laboratory and support
AG Prof. Dr. S. Grond - Laboratory material support
AG Pr. Dr. Schulze-Osthoff - Laboratory material support
AG Pr. Dr. A. Weber - Laboratory material support for interlab study
Jakob Wendt - Wiki coding support
References
Anderle, C., Hennig, S., Kammerer, B., Li, S. M., Wessjohann, L., Gust, B., & Heide, L. (2007). Improved mutasynthetic approaches for the production of modified aminocoumarin antibiotics. Chem Biol, 14(8), 955-967. doi:10.1016/j.chembiol.2007.07.014
Anderle, C., Stieger, M., Burrell, M., Reinelt, S., Maxwell, A., Page, M., & Heide, L. (2008). Biological activities of novel gyrase inhibitors of the aminocoumarin class. Antimicrob Agents Chemother, 52(6), 1982-1990. doi:10.1128/AAC.01235-07
Bachmann, B. O., Li, R., & Townsend, C. A. (1998). beta-Lactam synthetase: a new biosynthetic enzyme. Proc Natl Acad Sci U S A, 95(16), 9082-9086.
Beisken, S., Meinl, T., Wiswedel, B., de Figueiredo, L. F., Berthold, M., & Steinbeck, C. (2013). KNIME-CDK: Workflow-driven cheminformatics. BMC Bioinformatics, 14, 257. doi:10.1186/1471-2105-14-257
Chen, Y., Wendt-Pienkowski, E., Ju, J., Lin, S., Rajski, S. R., & Shen, B. (2010). Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944. J Biol Chem, 285(50), 38853-38860. doi:10.1074/jbc.M110.147744
Fasching, C. E., Tenover, F. C., Slama, T. G., Fisher, L. M., Sreedharan, S., Oram, M., . . . Peterson, L. R. (1991). gyrA mutations in ciprofloxacin-resistant, methicillin-resistant Staphylococcus aureus from Indiana, Minnesota, and Tennessee. J Infect Dis, 164(5), 976-979.
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., . . . Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem, 47(7), 1739-1749. doi:10.1021/jm0306430
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., . . . Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem, 49(21), 6177-6196. doi:10.1021/jm051256o
Fu, X. W., Pu, W. C., Zhang, G. L., & Wang, C. (2015). Synthesis of salicylaldehydes from phenols via copper-mediated duff reaction. Research on Chemical Intermediates, 41(11), 8147-8158.
Fujimoto-Nakamura, M., Ito, H., Oyamada, Y., Nishino, T., & Yamagishi, J. (2005). Accumulation of mutations in both gyrB and parE genes is associated with high-level resistance to novobiocin in Staphylococcus aureus. Antimicrob Agents Chemother, 49(9), 3810-3815. doi:10.1128/AAC.49.9.3810-3815.2005
Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov, 10(5), 449-461. doi:10.1517/17460441.2015.1032936
Heide, L. (2014). New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol, 304(1), 31-36. doi:10.1016/j.ijmm.2013.08.013
Holdgate, G. A., Tunnicliffe, A., Ward, W. H., Weston, S. A., Rosenbrock, G., Barth, P. T., . . . Timms, D. (1997). The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry, 36(32), 9663-9673. doi:10.1021/bi970294+
Kontoyianni, M. (2017). Docking and Virtual Screening in Drug Discovery. Methods Mol Biol, 1647, 255-266. doi:10.1007/978-1-4939-7201-2_18
Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., . . . Gilli, R. (2002). DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the noviose. Biochemistry, 41(23), 7217-7223.
Lawson, D. M., & Stevenson, C. E. (2012). Structural and functional dissection of aminocoumarin antibiotic biosynthesis: a review. J Struct Funct Genomics, 13(2), 125-133. doi:10.1007/s10969-012-9138-2
Lionta, E., Spyrou, G., Vassilatis, D. K., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem, 14(16), 1923-1938.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26.
Luft, T., Li, S. M., Scheible, H., Kammerer, B., & Heide, L. (2005). Overexpression, purification and characterization of SimL, an amide synthetase involved in simocyclinone biosynthesis. Arch Microbiol, 183(4), 277-285. doi:10.1007/s00203-005-0770-0
M Lindsay Grayson, S. M. C., James S McCarthy, John Mills, Johan W Mouton, S Ragnar Norrby, David L Paterson, Michael A Pfaller. (2010). Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs.
Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci, 98(3), 861-893. doi:10.1002/jps.21494
Miller, M. T., Bachmann, B. O., Townsend, C. A., & Rosenzweig, A. C. (2001). Structure of beta-lactam synthetase reveals how to synthesize antibiotics instead of asparagine. Nat Struct Biol, 8(8), 684-689. doi:10.1038/90394
Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q. A., ... & Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature methods, 10(4), 354-360.
Organization, G. W. H. (2017). Prioritization of pathogens to guide discovery, reserach and development of new antibiotics fro drug-resistant bacterial infections, including tuberculosis.
Paget, M. S., Chamberlin, L., Atrih, A., Foster, S. J., & Buttner, M. J. (1999). Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol, 181(1), 204-211.
Sadiq, A. A., Patel, M. R., Jacobson, B. A., Escobedo, M., Ellis, K., Oppegard, L. M., . . . Kratzke, R. A. (2010). Anti-proliferative effects of simocyclinone D8 (SD8), a novel catalytic inhibitor of topoisomerase II. Invest New Drugs, 28(1), 20-25. doi:10.1007/s10637-008-9209-1
Schimana, J., Fiedler, H. P., Groth, I., Sussmuth, R., Beil, W., Walker, M., & Zeeck, A. (2000). Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tu 6040. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo), 53(8), 779-787.
Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci, 22(1), 90-101. doi:10.1016/j.sjbs.2014.08.002
Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., . . . Prokopenko, V. V. (2005). Virtual computational chemistry laboratory--design and description. J Comput Aided Mol Des, 19(6), 453-463. doi:10.1007/s10822-005-8694-y
Tsai, F. T., Singh, O. M., Skarzynski, T., Wonacott, A. J., Weston, S., Tucker, A., . . . Wigley, D. B. (1997). The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins, 28(1), 41-52.
© iGEM Team Tuebingen 2017