Difference between revisions of "Team:Toronto/Analysis"

Line 32: Line 32:
 
<figure>
 
<figure>
 
<div class="figures">
 
<div class="figures">
<div class="image"><img src="https://2017.igem.org/File:T--Toronto--2017_CI.png" alt="data"></div>
+
<div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7b/T--Toronto--2017_CI.png" alt="data"></div>
    <div class="image"><img src="https://2017.igem.org/File:T--Toronto--2017_sgRNA.png" alt="data"></div>
+
    <div class="image"><img src="https://static.igem.org/mediawiki/2017/c/c3/T--Toronto--2017_sgRNA.png" alt="data"></div>
<div class="image"><img src="https://2017.igem.org/File:T--Toronto--2017_anti_crispr.png" alt="data"></div>
+
<div class="image"><img src="https://static.igem.org/mediawiki/2017/5/54/T--Toronto--2017_anti_crispr.png" alt="data"></div>
    <div class="image"><img src="https://2017.igem.org/File:T--Toronto--2017_ci_anti.png" alt="data"></div>
+
    <div class="image"><img src="https://static.igem.org/mediawiki/2017/2/23/T--Toronto--2017_ci_anti.png" alt="data"></div>
 
</div>
 
</div>
 
</figure>
 
</figure>
Line 45: Line 45:
 
\begin{eqnarray}
 
\begin{eqnarray}
 
\frac{x_2}{dt} = \alpha - \gamma x_2 \\
 
\frac{x_2}{dt} = \alpha - \gamma x_2 \\
\frac{x_2}{dt} + \gamma x_2 = = \alpha
+
\frac{x_2}{dt} + \gamma x_2 = \alpha
 
\end{eqnarray}
 
\end{eqnarray}
 
<p>Integrating Factor: </p>
 
<p>Integrating Factor: </p>
 
\begin{eqnarray}
 
\begin{eqnarray}
e^(\int \gamma dt) = e^(\gamma t)
+
e^{\int \gamma dt} = e^{\gamma t}
 
\end{eqnarray}
 
\end{eqnarray}
 
<p>Multiplying both sides by our integrating factor: </p>
 
<p>Multiplying both sides by our integrating factor: </p>
 
\begin{eqnarray}
 
\begin{eqnarray}
(\frac{x_2}{dt} + \gamma x_2)e^(\gamma t) =  \alpha e^(\gamma t) \\
+
(\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} =  \alpha e^{\gamma t}\\
\int (\frac{x_2}{dt} + \gamma x_2)e^(\gamma t) =  \int \alpha e^(\gamma t) \\
+
\int (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} =  \int \alpha e^{\gamma t} \\
x_2 = \frac{\alpha}{\gamma} + ce^(-\gamma t)
+
x_2 = \frac{\alpha}{\gamma} + ce^{-\gamma t}
 
\end{eqnarray}
 
\end{eqnarray}
 
</div>
 
</div>
Line 61: Line 61:
 
<div id="subsection-Plots" class="subsection">
 
<div id="subsection-Plots" class="subsection">
 
<h2 class="text-yellow">R plots</h2>
 
<h2 class="text-yellow">R plots</h2>
Visit our <a href="https://github.com/igemuoftATG/drylab-matlab">GitHub repository</a> for our code.
+
<p>Visit our <a href="https://github.com/igemuoftATG/drylab-matlab">GitHub repository</a> for our code.</p>
 
<figure>
 
<figure>
 
<div class="figures">
 
<div class="figures">

Revision as of 01:44, 16 December 2017

Analysis

Introduction

Using the previously derived expressions from our ODEs, we use the Mathworks Simulink package to derive solutions to our system for a range of parameters.

data
data
data
data

ODE Solution

Solving:

\begin{eqnarray} \frac{x_2}{dt} = \alpha - \gamma x_2 \\ \frac{x_2}{dt} + \gamma x_2 = \alpha \end{eqnarray}

Integrating Factor:

\begin{eqnarray} e^{\int \gamma dt} = e^{\gamma t} \end{eqnarray}

Multiplying both sides by our integrating factor:

\begin{eqnarray} (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \alpha e^{\gamma t}\\ \int (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \int \alpha e^{\gamma t} \\ x_2 = \frac{\alpha}{\gamma} + ce^{-\gamma t} \end{eqnarray}

R plots

Visit our GitHub repository for our code.

data
Figure 1.1: Log Linear transformation of RFU/OD600 vs Time, Regression Line (red) fitted to data
data
Figure 1.1: RFU/OD600 vs Time with Transfromed Regression Line (red)

R Analysis

R Analysis:
Call:
lm(formula = log(x) ~ c(time, time, time))

Residuals:
     Min       1Q   Median       3Q      Max
-0.58853 -0.15536  0.01303  0.19867  0.44055

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)          2.87199    0.21773   13.19 1.47e-15 ***
c(time, time, time)  0.15267    0.01142   13.37 9.74e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2935 on 37 degrees of freedom
Multiple R-squared:  0.8285,	Adjusted R-squared:  0.8238
F-statistic: 178.7 on 1 and 37 DF,  p-value: 9.741e-16

Intercept represents the equilibrium value of LacILov, our intercept:

data