Line 32: | Line 32: | ||
<figure> | <figure> | ||
<div class="figures"> | <div class="figures"> | ||
− | <div class="image"><img src="https:// | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/7/7b/T--Toronto--2017_CI.png" alt="data"></div> |
− | <div class="image"><img src="https:// | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/c/c3/T--Toronto--2017_sgRNA.png" alt="data"></div> |
− | <div class="image"><img src="https:// | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/5/54/T--Toronto--2017_anti_crispr.png" alt="data"></div> |
− | <div class="image"><img src="https:// | + | <div class="image"><img src="https://static.igem.org/mediawiki/2017/2/23/T--Toronto--2017_ci_anti.png" alt="data"></div> |
</div> | </div> | ||
</figure> | </figure> | ||
Line 45: | Line 45: | ||
\begin{eqnarray} | \begin{eqnarray} | ||
\frac{x_2}{dt} = \alpha - \gamma x_2 \\ | \frac{x_2}{dt} = \alpha - \gamma x_2 \\ | ||
− | \frac{x_2}{dt} + \gamma x_2 | + | \frac{x_2}{dt} + \gamma x_2 = \alpha |
\end{eqnarray} | \end{eqnarray} | ||
<p>Integrating Factor: </p> | <p>Integrating Factor: </p> | ||
\begin{eqnarray} | \begin{eqnarray} | ||
− | e^ | + | e^{\int \gamma dt} = e^{\gamma t} |
\end{eqnarray} | \end{eqnarray} | ||
<p>Multiplying both sides by our integrating factor: </p> | <p>Multiplying both sides by our integrating factor: </p> | ||
\begin{eqnarray} | \begin{eqnarray} | ||
− | (\frac{x_2}{dt} + \gamma x_2)e^ | + | (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \alpha e^{\gamma t}\\ |
− | \int (\frac{x_2}{dt} + \gamma x_2)e^ | + | \int (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \int \alpha e^{\gamma t} \\ |
− | x_2 = \frac{\alpha}{\gamma} + ce^ | + | x_2 = \frac{\alpha}{\gamma} + ce^{-\gamma t} |
\end{eqnarray} | \end{eqnarray} | ||
</div> | </div> | ||
Line 61: | Line 61: | ||
<div id="subsection-Plots" class="subsection"> | <div id="subsection-Plots" class="subsection"> | ||
<h2 class="text-yellow">R plots</h2> | <h2 class="text-yellow">R plots</h2> | ||
− | Visit our <a href="https://github.com/igemuoftATG/drylab-matlab">GitHub repository</a> for our code. | + | <p>Visit our <a href="https://github.com/igemuoftATG/drylab-matlab">GitHub repository</a> for our code.</p> |
<figure> | <figure> | ||
<div class="figures"> | <div class="figures"> |
Revision as of 01:44, 16 December 2017
Analysis
Introduction
Using the previously derived expressions from our ODEs, we use the Mathworks Simulink package to derive solutions to our system for a range of parameters.
ODE Solution
Solving:
\begin{eqnarray} \frac{x_2}{dt} = \alpha - \gamma x_2 \\ \frac{x_2}{dt} + \gamma x_2 = \alpha \end{eqnarray}Integrating Factor:
\begin{eqnarray} e^{\int \gamma dt} = e^{\gamma t} \end{eqnarray}Multiplying both sides by our integrating factor:
\begin{eqnarray} (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \alpha e^{\gamma t}\\ \int (\frac{x_2}{dt} + \gamma x_2)e^{\gamma t} = \int \alpha e^{\gamma t} \\ x_2 = \frac{\alpha}{\gamma} + ce^{-\gamma t} \end{eqnarray}R plots
Visit our GitHub repository for our code.
R Analysis
R Analysis: Call: lm(formula = log(x) ~ c(time, time, time)) Residuals: Min 1Q Median 3Q Max -0.58853 -0.15536 0.01303 0.19867 0.44055 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.87199 0.21773 13.19 1.47e-15 *** c(time, time, time) 0.15267 0.01142 13.37 9.74e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2935 on 37 degrees of freedom Multiple R-squared: 0.8285, Adjusted R-squared: 0.8238 F-statistic: 178.7 on 1 and 37 DF, p-value: 9.741e-16
Intercept represents the equilibrium value of LacILov, our intercept: