Difference between revisions of "Team:SIAT-SCIE/Home"

Line 4: Line 4:
 
<style>
 
<style>
 
     /*this is about div id=comic: take the top banner as a whole to eliminate the margin*/
 
     /*this is about div id=comic: take the top banner as a whole to eliminate the margin*/
     p{
+
     p {
         font-family:'Comic Sans MS','Jokerman',sans-serif;
+
         font-family: 'Comic Sans MS','Jokerman',sans-serif;
 
     }
 
     }
     #comics img{
+
 
         height:800px;
+
     #comics img {
         width:1263px;
+
         height: 800px;
 +
         width: 1263px;
 
     }
 
     }
 +
 
     #comics p {
 
     #comics p {
 
         margin: 0px;
 
         margin: 0px;
         margin-top:10px;
+
         margin-top: 10px;
         margin-left:-10px;
+
         margin-left: -10px;
       
+
       
+
 
     }
 
     }
     #mrtardimg img{
+
 
 +
     #mrtardimg img {
 
         height: 400px;
 
         height: 400px;
 
         width: 500px;
 
         width: 500px;
Line 24: Line 25:
 
         margin-right: 0px;
 
         margin-right: 0px;
 
     }
 
     }
     .bdimg img{
+
 
 +
     .bdimg img {
 
         height: 400px;
 
         height: 400px;
 
         width: 500px;
 
         width: 500px;
 
         padding: 50px;
 
         padding: 50px;
       
+
         margin-right: 0px;
         margin-right:0px;
+
 
     }
 
     }
 +
 
     .bdwl {
 
     .bdwl {
 
         width: 400px;
 
         width: 400px;
Line 37: Line 39:
 
         padding-right: 117px;
 
         padding-right: 117px;
 
         padding-top: 245px;
 
         padding-top: 245px;
        font-family: 'Comic Sans MS',sans-serif;
 
        font-size:large;
 
 
     }
 
     }
  
Line 48: Line 48:
 
         padding-left: 117px;
 
         padding-left: 117px;
 
         padding-right: 117px;
 
         padding-right: 117px;
         font-family: 'Comic Sans MS',sans-serif;
+
    }
         font-size:medium;
+
 
 +
        .bdwr p, .bdrl p {
 +
 
 +
    {
 +
 
 +
    {
 +
        SIAT-SCIE
 +
    }
 +
 
 +
    }
 +
 
 +
    <html > <style >
 +
    /*this is about div id=comic: take the top banner as a whole to eliminate the margin*/
 +
    p {
 +
         font-family: 'Comic Sans MS','Jokerman',sans-serif;
 +
    }
 +
 
 +
    #comics img {
 +
         height: 800px;
 +
        width: 1263px;
 +
    }
 +
 
 +
    #comics p {
 +
        margin: 0px;
 +
        margin-top: 10px;
 +
        margin-left: -10px;
 +
    }
 +
 
 +
    #mrtardimg img {
 +
        height: 400px;
 +
        width: 500px;
 +
        padding: 50px;
 +
        margin-right: 0px;
 +
    }
 +
 
 +
    .bdimg img {
 +
        height: 400px;
 +
        width: 500px;
 +
        padding: 50px;
 +
        margin-right: 0px;
 +
    }
 +
 
 +
    .bdwl {
 +
        width: 400px;
 +
        float: left;
 +
        padding-left: 117px;
 +
        padding-right: 117px;
 +
        padding-top: 245px;
 
          
 
          
 +
    }
 +
 +
    .bdwr {
 +
        height: 500px;
 +
        width: 400px;
 +
        float: right;
 +
        padding-top: 175px;
 +
        padding-left: 117px;
 +
        padding-right: 117px;
 +
       
 +
    }
 +
        .bdwr p, .bdwl, p {
 +
            font-family: 'Comic Sans MS',sans-serif;
 +
            font-size: large;
 +
        }
 +
    .block {
 +
        background-color: #F2E2C1;
 +
        padding-top: 100px;
 +
        margin: -17px;
 +
    }
 +
 +
    #banner {
 +
        text-align: center;
 +
    }
 +
 +
        #banner img {
 +
            height: 600px;
 +
            width: 1100px;
 +
            padding: 50px;
 +
            text-align: center;
 +
        }
 +
</style>
 +
<div id="body">
 +
    <div id="comics">
 +
        <p>
 +
            <img src="[[File:SIAT-SCIE_mainpagetitle.mov]]" alt="titlecomic" class="titlecomic" />
 +
            <!--also not sure if the image should be the back ground or the seperate one-->
 +
        </p>
 +
    </div>
 +
    <br />
 +
    <div id="mrtard">
 +
        <div class="block">
 +
            <div class="bdwr">
 +
                <p>
 +
                    <table id="mrtardintro">
 +
                        <tr>
 +
                            <td></td>
 +
                            <td></td>
 +
                        </tr>
 +
                    </table>
 +
                </p>
 +
            </div>
 +
            <div id="mrtardimg">
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard" /></p>
 +
            </div>
 +
 +
        </div>
 +
    </div>
 +
    <div id="basic_description">
 +
        <div id="bd1" class="block">
 +
            <div class="bdwl">
 +
                <!--basic description writting right-->
 +
                <p>Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. . When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern. </p>
 +
            </div>
 +
            <div class="bdimg" id="bdp1">
 +
                <!--basic description picture 1-->
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription1" /></p>
 +
 +
            </div>
 +
 +
 +
 +
        </div>
 +
        <div id="bd2" class="block">
 +
            <div class="bdwr">
 +
                <p>
 +
                    Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions.
 +
                    Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.
 +
                </p>
 +
            </div>
 +
            <div class="bdimg" id="bdp2">
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription2" /></p>
 +
            </div>
 +
 +
        </div>
 +
        <div id="bd3" class="block">
 +
            <div class="bdwl">
 +
                <p>
 +
                    As a consequence, we turned our attention to tardigrades-microscopic animals that survive a remarkable array of stress, including desiccation, radiation, extreme heat and oxidation.
 +
                    <br />turns out that tardigrades are able to reversibly switching to ametabolic state—a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.
 +
                </p>
 +
            </div>
 +
            <div class="bdimg" id="bdp3">
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription3" /></p>
 +
            </div>
 +
 +
        </div>
 +
        <div id="bd4" class="block">
 +
            <div class="bdwr">
 +
                <p>Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice. </p>
 +
            </div>
 +
            <div class="bdimg" id="bdp4">
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription4" /></p>
 +
            </div>
 +
 +
        </div>
 +
    </div>
 +
    <div id="banner">
 +
        <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard_recruiting" /></p>
 +
    </div>
 +
    <div id="learnmore">
 +
        <a href="https://2017.igem.org/Team:SIAT-SCIE/Project_Description" alt="Description">Learn More about the Project</a>
 +
    </div>
 +
</div>
 +
</html>
 +
 
     }
 
     }
 
     .block {
 
     .block {
Line 65: Line 228:
 
         padding: 50px;
 
         padding: 50px;
 
         text-align:center;
 
         text-align:center;
       
+
 
 
     }
 
     }
 
</style>
 
</style>
    <div id="body">
+
<div id="body">
        <div id="comics">
+
    <div id="comics">
            <p>
+
        <p>
                <img src="[[File:SIAT-SCIE_mainpagetitle.mov]]" alt="titlecomic" class="titlecomic" />
+
            <img src="[[File:SIAT-SCIE_mainpagetitle.mov]]" alt="titlecomic" class="titlecomic" />
                <!--also not sure if the image should be the back ground or the seperate one-->
+
            <!--also not sure if the image should be the back ground or the seperate one-->
             </p>
+
        </p>
 +
    </div>
 +
    <br />
 +
    <div id="mrtard">
 +
        <div class="block">
 +
             <div class="bdwr">
 +
                <p>
 +
                    <table id="mrtardintro">
 +
                        <tr>
 +
                            <td></td>
 +
                            <td></td>
 +
                        </tr>
 +
                    </table>
 +
                </p>
 +
            </div>
 +
            <div id="mrtardimg">
 +
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard" /></p>
 +
            </div>
 +
 
 
         </div>
 
         </div>
        <br />
+
    </div>
        <div id="mrtard">
+
    <div id="basic_description">
            <div class="block">
+
        <div id="bd1" class="block">
                <div class="bdwr">
+
            <div class="bdwl">
                    <p>
+
                <!--basic description writting right-->
                        <table id="mrtardintro">
+
                <p>Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. . When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern. </p>
                            <tr>
+
            </div>
                                <td></td>
+
            <div class="bdimg" id="bdp1">
                                <td></td>
+
                <!--basic description picture 1-->
                            </tr>
+
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription1" /></p>
                        </table>
+
                    </p>
+
                </div>
+
                <div id="mrtardimg">
+
                    <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard" /></p>
+
                </div>
+
  
 
             </div>
 
             </div>
 +
 +
 +
 
         </div>
 
         </div>
         <div id="basic_description">
+
         <div id="bd2" class="block">
            <div id="bd1" class="block">
+
            <div class="bdwr">
                <div class="bdwl">
+
                <p>
                    <!--basic description writting right-->
+
                     Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions.
                     <p>Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. . When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern. </p>
+
                    Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.
                </div>
+
                </p>
                <div class="bdimg" id="bdp1"><!--basic description picture 1-->
+
            </div>
                    <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription1"/></p>
+
            <div class="bdimg" id="bdp2">
               
+
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription2" /></p>
                </div>
+
            </div>
  
               
+
        </div>
              
+
        <div id="bd3" class="block">
 +
             <div class="bdwl">
 +
                <p>
 +
                    As a consequence, we turned our attention to tardigrades-microscopic animals that survive a remarkable array of stress, including desiccation, radiation, extreme heat and oxidation.
 +
                    <br />turns out that tardigrades are able to reversibly switching to ametabolic state—a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.
 +
                </p>
 
             </div>
 
             </div>
             <div id="bd2" class="block">
+
             <div class="bdimg" id="bdp3">
                <div class="bdwr">
+
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription3" /></p>
                    <p>Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions.
+
Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.
+
</p>
+
                </div>
+
                <div class="bdimg" id="bdp2">
+
                    <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription2" /></p>
+
                </div>
+
               
+
 
             </div>
 
             </div>
            <div id="bd3" class="block">
+
 
                <div class="bdwl">
+
        </div>
                    <p>As a consequence, we turned our attention to tardigrades-microscopic animals that survive a remarkable array of stress, including desiccation, radiation, extreme heat and oxidation.
+
        <div id="bd4" class="block">
<br />turns out that tardigrades are able to reversibly switching to ametabolic state—a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.
+
            <div class="bdwr">
</p>
+
                <p>Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice. </p>
                </div>
+
                <div class="bdimg" id="bdp3">
+
                    <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription3"  /></p>
+
                </div>
+
               
+
 
             </div>
 
             </div>
             <div id="bd4" class="block">
+
             <div class="bdimg" id="bdp4">
                <div class="bdwr">
+
                <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription4" /></p>
                    <p>Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice. </p>
+
                </div>
+
                <div class="bdimg" id="bdp4">
+
                    <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="basic_discription4" /></p>
+
                </div>
+
               
+
 
             </div>
 
             </div>
 +
 
         </div>
 
         </div>
        <div id="banner">
 
            <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard_recruiting" /></p>
 
        </div>
 
        <div id="learnmore">
 
            <a href="https://2017.igem.org/Team:SIAT-SCIE/Project_Description" alt="Description">Learn More about the Project</a>
 
        </div>
 
 
     </div>
 
     </div>
 +
    <div id="banner">
 +
        <p><img src="https://static.igem.org/mediawiki/2017/2/2b/SIAT-SCIE_sample.png" alt="Mr.Tardi-guard_recruiting" /></p>
 +
    </div>
 +
    <div id="learnmore">
 +
        <a href="https://2017.igem.org/Team:SIAT-SCIE/Project_Description" alt="Description">Learn More about the Project</a>
 +
    </div>
 +
</div>
 
</html>
 
</html>

Revision as of 11:57, 14 August 2017

titlecomic


Mr.Tardi-guard

Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. . When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern.

basic_discription1

Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions. Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.

basic_discription2

As a consequence, we turned our attention to tardigrades-microscopic animals that survive a remarkable array of stress, including desiccation, radiation, extreme heat and oxidation.
turns out that tardigrades are able to reversibly switching to ametabolic state—a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.

basic_discription3

Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice.

basic_discription4

   }
   .block {
       background-color: #F2E2C1;
       padding-top: 100px;
       margin:-17px;
   }
   #banner{
       text-align:center;
   }
   #banner img {
       height: 600px;
       width: 1100px;
       padding: 50px;
       text-align:center;
   }

</style>

<img src="File:SIAT-SCIE mainpagetitle.mov" alt="titlecomic" class="titlecomic" />

   

<img src="SIAT-SCIE_sample.png" alt="Mr.Tardi-guard" />

Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. . When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern.

<img src="SIAT-SCIE_sample.png" alt="basic_discription1" />


Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions. Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.

<img src="SIAT-SCIE_sample.png" alt="basic_discription2" />

As a consequence, we turned our attention to tardigrades-microscopic animals that survive a remarkable array of stress, including desiccation, radiation, extreme heat and oxidation.
turns out that tardigrades are able to reversibly switching to ametabolic state—a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.

<img src="SIAT-SCIE_sample.png" alt="basic_discription3" />

Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice.

<img src="SIAT-SCIE_sample.png" alt="basic_discription4" />

       <a href="https://2017.igem.org/Team:SIAT-SCIE/Project_Description" alt="Description">Learn More about the Project</a>

</html>