<!DOCTYPE html>
AHK4 Assay
Overview
概要をここにTo establish a co-culture system, it is important that E. coli can receive and respond to signals produced by human cells. In our project, we decided to use iP, a cytokinin, as the signals and AHK4,a receptor of cytokinins, as the recptor. AHK4 can respond to iP by using a Histidine-to-Aspartate phosphorelay system existing in E. coli. Histidine-to-aspartate phosphorelay systems are one of most important signal transduction systems for prokaryotes to respond to environmental stimuli. This system includes two important compornents: a histidine kinase and a response regulator. The histidine kinase has sensor domains which enable to receive an environmental stimulus. After histidine kinase sensed a stimulus, it is autophosphorelayed and then the phosphate group is transferred to the response regulator, which in turn, promote expression of a certain gene corresponding to the stimulus. One of the His-to-Asp phosphorelay systems used in E. coli is composed of three components: RcsC, a histidine kinase, RcsD, a histidine-containing phosphotransmitter, RcsB, a response regulator. In this system, cps operon is activated through the pathway of RcsC→RcsD→RscB→cps. Previous studies showed that AHK4, a histidine kinase of Arabidopsis thaliana, can also take advantage of RcsD→RscB→cps pathway in E. coli by receiving cytokinins. Since iP and AHK4 are only used in plants, we considered that employing this AHK4→RcsD→RscB→cps pathway enable us to establish communication between human cells and bacteria without activating any other unexpected genes.
Results
文章
文章
Discussion
考察
Reference
参考文献
Hajime Fujita: All Rights Reserved