Description
The Lambert iGEM team is attempting to address two themes that embody synthetic biology and its diverse range of applications: precision and universality. Last year, the 2016 Lambert iGEM team attempted to address the issue of overexpression of proteins by devising a “switch”, a genetically engineered construct that degraded GFP (green fluorescent protein) using a protease mechanism ClpXP upon induction of IPTG. This year’s team is continuing to build upon this idea of characterizing ClpXP by further developing our genetic construct via the use of various chromoproteins and promoters. The data will be quantified using the ChromQ, a camera device that standardizes the light source to accurately measure the amount of chromoprotein present in a pellet of cells. Our ChromQ aims to allow especially under-funded labs to have access to a device that quantifies data without spending thousands of dollars; in addition, a functional app and mathematical model are being created to be able to compare expressions of pigments before, during, and after induction of IPTG. Ultimately, the 2017 Lambert iGEM team is striving to further characterize a precise, non-lysosomal induced protein degradation (ClpXP) and to market an affordable device (ChromQ) that can be universally used to quantify data.
Improving Previous Parts
References
And, S. A. (2009, February 13). Sarita Ahlawat. ClpXP Degrades SsrA-tagged proteins in S.pneumoniae.Retrieved Summer, 2017, from http://jb.asm.org/content/191/8/2894.full
Andersen , J.B. , Sternberg , C. , Poulsen , L.K. , Bjorn , S.P. , Givskov , M. , and Molin , S. ( 1998 ) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria . Appl Environ Microbiol 64 : 2240 – 2246 .
Baker, T. A., & Sauer, R. T. (2011, June 27). ClpXP, an ATP-powered unfolding and protein-degradation machine. Retrieved Summer, 2017, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209554/
Bar-Nun, S., & Glickman, M. H. (2012). Proteasomal AAA-ATPases: Structure and function. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(1), 67–82. doi:10.1016/j.bbamcr.2011.07.009. Retrieved Summer, 2017 from http://www.sciencedirect.com/science/article/pii/S0167488911001984
Bohn , C. , Binet , E. , and Bouloc , P. ( 2002 ) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease . Mol Genet Genomics 266 : 827 –831 .
Burton , R.E. , Siddiqui , S.M. , Kim , Y.I. , Baker , T.A. , and Sauer , R.T. ( 2001 ) Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine . EMBO J 20 : 3092 –3100 .
Ciechanover, A. (2005). Cell death and differentiation - abstract of article: Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting[ast]. Cell Death & Differentiation, 12(9), 1178–1190. doi:10.1038/sj.cdd.4401692
Cooper, G. M. (2000). Protein degradation. Retrieved Summer, 2017 from http://www.ncbi.nlm.nih.gov/books/NBK9957/
Farrell, C., Grossman, A., & Sauer, R. (2005). Cytoplasmic degradation of ssrA-tagged proteins.Molecular microbiology., 57(6), 1750–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16135238
Flynn , J.M. , Levchenko , I. , Seidel , M. , Wickner , S.H. , Sauer , R.T. , and Baker , T.A. ( 2001 ) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis . Proc Natl Acad Sci USA 11 : 10584 – 10589.
Georgia Institute of Technology. (2015, September 1). “Bacterial litmus Test” provides inexpensive measurement of Micronutrients. Retrieved from GT News Center, http://www.news.gatech.edu/2015/09/01/bacterial-litmus-test-provides-inexpensive-measurement-micronutrients
Goldberg, A.L., A.S. Menon, S. Goff and D.T. Chin. 1987. The mechanism and regulation of the ATP-dependent protease La from Escherichia coli. Biochem. Soc. Trans. 15: 809-811. Retrieved October 1, 2017 from http://www.fao.org/wairdocs/ilri/x5550e/x5550e0d.htm
Hwang BJ, Woo KM, Goldberg AL, Chung CH. Protease Ti, a new ATP-dependent protease in Escherichia coli,contains protein-activated ATPase and proteolytic functions in distinct subunits. J Biol Chem. 1988;263:8727–8734.
Katayama-Fujimura Y, Gottesman S, Maurizi MR. A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem. 1987;262:4477–4485.
Landry, B. P., & Stöckel, J. (2013). Use of degradation tags to control protein levels in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Applied and Environmental Microbiology,79(8), 2833–2835. doi:10.1128/AEM.03741-12
Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. ATP-Dependent Proteases Degrade Their Substrates by Processively Unraveling Them from the Degradation Signal.
McNerney, M. P., Watstein, D. M., & Styczynski, M. P. (2015). Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems. Metabolic Engineering, 31, 123–131. doi:10.1016/j.ymben.2015.06.011
Minikel, E. V. (2013, June 11). Basics of protein degradation. Retrieved Summer, 2017, from http://www.cureffi.org/2013/07/11/basics-of-protein-degradation/
Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 2007;17:165–172.
Purcell, O., Grierson, C. S., Bernardo, M. di, & Savery, N. J. (2012). Temperature dependence of ssrA-tag mediated protein degradation. Journal of Biological Engineering, 6(1), . doi:10.1186/1754-1611-6-10
Schrader, E. K., Harstad, K. G., & Matouschek, A. (n.d.). Targeting proteins for degradation. , 5(11), . Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228941/
Snider, J., Thibault, G., & Houry, W. A. (2008). The AAA+ superfamily of functionally diverse proteins. , 9(4), . Retrieved Summer, 2017 from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643927/
Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci.2009;85:12–36.
Tao, L., & Biswas, I. (2015). Degradation of SsrA-tagged proteins in streptococci. , 161(Pt 4),. Retrieved September 9, 2017 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857447/
Tu, D., Lee, J., Ozdere, T., Lee, T. J., & You, L. (2007, January ). Engineering Genetic Circuits: Foundations and Applications. Retrieved from http://people.duke.edu/~you/publications/Tu_etal_SyntheticBiology.pdf
Watstein, D. M., McNerney, M. P., & Styczynski, M. P. (2015). Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor. Metabolic Engineering,31, 171–180. doi:10.1016/j.ymben.2015.06.007