Ⅰ.Microfluidic chip
We chose the microfluidic chip because it has three significant advantages in the application:
1.The tiny volume of the microfluidic chip allows the liquid reaction system to be miniaturized and integrated. It can use a small amount of liquid and space to achieve complex biochemical reactions;
2.Reactions on the microfluidic chip can be quantitative analysis and detection;
3. Microfluidic chip can be combined with external devices to make biochemical reactions become automated and intelligent.
Based on the characteristics of microfluidic chip, more and more people use microfluidic chip as the platform of biochemical detection and POCT [1]. For example, there has been a microfluidic platform which can detect C-reactive protein in 2008,and the limit of detection is 2.6 ng/ml.Besides,it can be produced in large quantities[2].Similarly, in the case of hepatotoxicity assessment, a POCT method based on microfluidic systems overcomes the shortcomings of long processing times and high levels of personnel in traditional methods[3].It is worth mentioning that there already have mature POCT equipments based on microfluidic platform in the market.It can be seen that the microfluidic platform not only has irreplaceable performance advantages, but also has certain marketization potential.
Design:
An important feature of microfluidic chips is that they are capable of artificially designing liquid lines and reaction chambers. Our project involves three reaction processes: the separation of the aptamer and the complementary strand on the magnetic beads, the separation of the complementary strand from the small molecule, and the biochemical reaction of the small molecule and the engineered bacteria. According to the needs of the project, we designed the two reaction chambers as shown, and used the peristaltic pump, the magnet plate and the heating plate as supporting auxiliary equipment.
As can be seen from Fig1, our chip consists of two chambers:
Chamber 1 is oval(long axis length:18mm, short axis length:6mm). In our design, the function of the chamber is to hold our magnetic beads (fixed with magnets) with the aptamer and provide a place for the sample to bind to the aptamer so that the the complementary strands with lysine can get detached . Our intention to design the chamber as an oval is that the elongated structure can reduce the bubble generated by the difference in flow rate between the cavity wall and the middle stream.
Chamber 2 is round( diameter:12mm) Within this chamber ,there are gel pillars(diameter: 0.5mm). The contents of the chamber are engineering bacteria frozen into dry powdery and trypsin. After the reaction in the chamber is carried out for a certain period of time, the mixed reaction of the culture medium and the reaction liquid flows from the upstream into the chamber under the negative pressure generated by the peristaltic pump (see the equipment section), the following reaction occurs:
Hire Us!
Facilis ipsum reprehenderit nemo molestias. Aut cum mollitia reprehenderit. Eos cumque dicta adipisci architecto culpa amet.