Although native cytotoxicity of the bacteria was shown to inhibit tumor growth to a certain extent, simply administering unchanged bacteria intravenously has been connected to severe side effects and limited efficacy. [11] To overcome this, engineering efforts have been made and different modifications have been implemented and are currently being tested in clinical trials. [12][13] However, full potential of bacteria as an anti-cancer agent has not yet been fulfilled.
Our vision
In his review on the current state of bacterial cancer therapy [10], Neil Forbes defines an ideal bacterial cancer as:
a tiny programmable robot factory that specifically targets tumors,
selectively cytotoxic to cancer cells,
self-propelled,
responsive to external signals,
able to sense the local environment and finally,
externally detectable.
Figure 2. Features of ideal bacterial cancer therapeutic as implemented into our design. E. coli Nissle 1917 inherently colonizes tumors. Once in this special surrounding, it is designed to recognize the environment (1. Environmental sensing), produce an MRI contrast agent (2. External detectabilty) and accummulate a cytotoxic agent it will later deliver. After confirmation of the correct colonization done by a physician, an external signal is sent via focused ultrasound (3. Response to external signal). This leads to selective delivery of the cytotoxic agent to the tumor (4. Selective cytotoxicity).
CATE, the cancer-targeting E. coli that we have engineered, represents our vision of the ideal bacterial cancer therapeutic. With the combination of autonomous targeting, visualization and externally controlled toxin release, we believe our project provides a novel non-invasive, quick and safe approach to treating cancer (Figure 2).
To learn more about how we envision the actual treatment procedure to look like, see CATE in Action.
For the design of the circuit behind the story, visit to our Circuit page.
Alim, Eric, et al. "The role of surgery in the treatment of limited disease small cell lung cancer: time to reevaluate." Journal of Thoracic Oncology 3.11 (2008): 1267-1271. doi: 10.1097/JTO.0b013e318189a860
Delaney, Geoff, et al. "The role of radiotherapy in cancer treatment." Cancer 104.6 (2005): 1129-1137. doi: 10.1002/cncr.21324
Romiti, Adriana, et al. "Metronomic chemotherapy for cancer treatment: a decade of clinical studies." Cancer chemotherapy and pharmacology 72.1 (2013): 13-33. doi: 10.1007/s00280-013-2125-x
Wu, Han-Chung, De-Kuan Chang, and Chia-Ting Huang. "Targeted therapy for cancer." J Cancer Mol 2.2 (2006): 57-66. doi: 10.1097/PPO.0000000000000135
Mellman, Ira, George Coukos, and Glenn Dranoff. "Cancer immunotherapy comes of age." Nature 480.7378 (2011): 480-489. doi: 10.1038/nature10673
Miller, Kimberly D., et al. "Cancer treatment and survivorship statistics, 2016." CA: a cancer journal for clinicians 66.4 (2016). doi: 10.3322/caac.21349
Felgner, Sebastian, et al. "Bacteria in cancer therapy: renaissance of an old concept." International journal of microbiology 2016 (2016). doi: 10.1155/2016/8451728
Forbes, Neil S. "Engineering the perfect (bacterial) cancer therapy." Nature reviews. Cancer 10.11 (2010): 785. doi: 10.1038/nrc2934
Patyar, S., et al. "Bacteria in cancer therapy: a novel experimental strategy." Journal of biomedical science 17.1 (2010): 21. doi: 10.1186/1423-0127-17-21
Toso, John F., et al. "Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma." Journal of clinical oncology 20.1 (2002): 142-152. doi: 10.1200/JCO.2002.20.1.142
Brausi, Maurizio, et al. "Side effects of Bacillus Calmette-Guerin (BCG) in the treatment of intermediate-and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG." European urology 65.1 (2014): 69-76. doi: 10.1016/j.eururo.2013.07.021