Team:Exeter/HP/Gold Integrated


Stakeholder Engagement

This page contains a high-level stakeholder table which contains the key elements that we took away from our stakeholder meetings and how we responded to this information. On the rightmost column there are links to further down the page where these meetings are explained in full detail using the AREA framework implemented in our project.

 

High-Level Stakeholder Table

                      
Stakeholder Project Aspect InfluencedWhat we learnt Response Further Information
Business School - Dr Sarah Hartley Human Practices
  • Introduced us to RRI and the AREA framework.
  • Provided knowledge on how to identify and approach stakeholders.
  • Ideas from social science are difficult to grasp for natural scientists.
  • Developed a detailed case study of Wheal Maid site, to target stakeholders to fill gaps in our case study.
  • Presented ideas we learnt in the summer to students to bridge the gap between social and natural science.
Click here for more information
Centre for Biomedical Modelling and Analysis (CMBA) Model
  • Suggested the idea of creating a user interface for our model and offered help with this if we required it.
  • We created a user interface for the model on the wiki, including a graph as a visual representation of the model's outputs.
Click here for more information
Greenpeace Biology-Basic Parts

Field Trip

Background

Applied Design
  • Gave us permission to use their ICP OES machine which can analyse metal concentrations in water samples.
  • Suggested contacting other NGOs for their policies on using GM organisms in our filtration system.
  • Initiated the discussion into considering a USP for our research.
  • Provided research materials into the wider context behind the problem of metal ion contaminated water.
  • We used their ICP OES machine to analyse the water samples we collected from the Wheal Maid site
  • Contacted multiple NGOs for their policies of GMO use.
  • Designed a closed filtration system to contain the bacteria to take these policies into account.
  • Have used the material provided to understand the background issue behind metal ion pollutants.
Click here for more information
Plymouth Marine Laboratory Applied Design
  • Suggested the low cost idea of using polypropelene scaffold torus structures as the media to grow our E. coli on in the filter.
  • Proposed the idea of using mouthwash to stress the E. coli in order to encourage biofilm formation.
  • Recommended using copper alginate beads instead of UV in our filtration system as our biosecurity mechanism.
  • We took on board the advice and used the polypropelene scaffold torus structures and mouthwash in our metal binding reactor experiements.
  • Researched into copper alginate beads as an alternative to UV for a means of bio-security in our filtration system.
Click here for more information
Taunton Aquarium Applied Design
  • Suggested using silica sand as the media for growing our E. coli on instead of nitrate pellets as it is resistant to the low PH that we found the contaminated water to be during our field trip.
  • Informed us that UV may not be an effective method for killing the E. coli as it generally just damages the DNA.
  • Experimented wuth silica sand as the media for our reactor, unfortunately the sand was too small and escaped out of the reactor when it fluidised.
  • Experimentally validated the concern of UV being ineffective
Click here for more information
South West Water Applied Design - Biosecurity
  • The equipment employed in the plant’s operations.
  • Methods of providing  bio-containment in bio-remediation operations.
  • SSW have no formalised stance on the use of GM organism, they are interested in any technology that improves efficiency and reliability.
  • Expressed concern over the waste associated with our filtration system.
  • Tested the effectiveness of UV radiation to determine its suitability in our filter.
  • We have explored the possibility of recycling our substrate which E.coli grown on by washing the bacteria off using a solution of EDTA.
  • The metat-EDTA complex can be sold on therefore reducing the wast produced.
Click here for more information
Veolia Water Model
  • We received an insight into the mine water treatment methods including information on scale of their operations and expenditure.
  • Funding is provided by DEFRA, the Environment Agency regulates the clean-up and Coal Authority is in charge of the clean-up of all UK mines.
  • Provided insight into the amount of waste produced by the extracted metal ions.
  • Allowed for comparison with our filtration design so we were able to make a concentrated effort to improve on areas where the current system fails, such as the significant usage of lime and the substantial waste entering the trailing Dam.
  • Ran their industrial scale data through our mathematical model.
  • Looked into ways of reducing associated waste using EDTA.
Click here for more information
Internal iGEM meetings Reflective
  • These sessions were to discuss feedback from stakeholders and academics to agree changes we should make to our project while reflecting on how the aims of the project have changed.
Click here for more information

Dr Sarah Hartley

Engage:

We were first introduced to Dr Sarah Hartley from the Business School at our ideas pitching presentation session at the end of our second week of our project. During the discussions after the presentation, Dr Hartley informed us that our integrated human practices would be made stronger by the use of a responsible research and innovation (RRI) framework. We then arranged to be given a two hour seminar on responsible research and innovation, by Dr Hartley. This introduced us to the different methods that are used to connect science to society and how this process can be improved by the use of the AREA framework. The seminar was interactive and encouraged us to compare different forms of human practices, to see which is the most effective. Perhaps most significantly, Sarah taught us the importance in distinguishing stakeholder engagement and public outreach.

Following our enthusiasm to incorporate the AREA framework into our project, we had regular meetings to improve our understanding of RRI, and so that Dr Hartley could provide feedback on our stakeholder engagement, and also advise us on how to conduct social science. In our first meeting we wanted to discuss whether RRI was suitable for our planned field trip to Wheal Maid. Sarah informed us that we needed ethics approval from the University. She also advised that we should aim to know everything about our case study before we conduct interviews with stakeholders.

Anticipate:

These meetings allowed us to anticipate that we would face ethical concerns were we to approach stakeholders without having ethics approval for our investigation. Dr Hartley also helped us to decide which stakeholders we would need to approach by advising us to conduct detailed research of the literature surrounding the case study of Wheal Maid. This meant stakeholders would be more open to discuss the questions we raise as we demonstrated an expert knowledge of the situation.

Reflect:

As a result of reflection being the section of the framework we struggled most with to grasp, we spent a lot of time discussing our reflections with Dr Hartley. We often reflected on the team dynamics and we could have conducted the project better. For example by discussing our difficulties with comprehending the AREA framework we believed that these ideas from social science should be introduced to natural scientists during education to bridge this gap.

Act:

We decided to implement the AREA framework into our project in order for it to be as responsible as possible. By using this framework, it proved to be more robust than integrated human practices on its own as a framework encourages us to consider the impacts of our research continually. We developed a detailed case study of Wheal Maid, understanding the Environmental, Economic, Social, Political and Historical issues at the site. This case study was not complete, and in order to fill the gaps in our knowledge we contacted relevant stakeholders with this expertise. As well as this, in order to bridge the gap between natural and social scientists, we decided to deliver a series of presentations to students about the importance of RRI in both our work during iGEM and in the scientific community as a whole.

Centre for Biomedical Modelling and Analysis (CMBA)

Engage:

Two members of our team met with five academics from the Centre for Biomedical Modelling and Analysis who offered their help for the modelling aspect of our project. We explained our current ideas for the model and they helped us consider how to make it more accessible to potential users.

Anticipate:

This was not applicable for this meeting.

Reflect:

Internal reflection on this meeting triggered the idea of enabling the user interface to produce a graph based on the user’s particular inputs. This would provide the user with a visual representation, therefore putting the outputs of the model into context making them easier to understand. This reflects our own personal motivations of wanting to make sure our research can be easily understood by the general public.

Act:

They suggested the idea of creating a graphical user interface to display our model to provide a visual representation that could be used in our presentation at the iGEM Jamboree enabling us to show the change in the model’s outputs for different input values. We took this one step further and decided to implement the graphical user interface within this group wiki enabling any potential user to easily access the model.

Greenpeace

Engage:

On the 18th July, we went to a meeting with 3 Greenpeace representatives. We wanted to speak to them about the current treatment methods at Wheal Jane and legislations behind setting up a filtration system on UNSECO sites such as the Consolidated mines. We were also interested to find out if we were allowed to use their ICPOES machine to analyse our samples from the Wheal Maid site, following our field trip. The meeting allowed us to gain access to use their ICP OES in addition to their ICP MS machines. They informed us that the ICP MS is useful for higher accuracy and can detect every element in the periodic table.

Anticipate:

It was highlighted to us that we needed to understand the process fully to prevent DNA exchange from our GM organism to another organism and ensuring that we used the GM organisms in a closed environment as this is their policy on the use of GM organisms. They also suggested contacting other NGOs for their policies on the use of GM organisms in our filtration system i.e. FOE, WWF, ETC, CBD, as it is important to get a variety of viewpoints enabling us to anticipate as many potential implications as possible.

Reflect:

This meeting stimulated reflection into our motivations behind the research, helping us to consider a USP for our project. One USP that was considered, is being able to take out more specific materials than other systems. This came about from the concern that high concentrations of other metals may saturate the pili before they are able to extract the metals we are targeting. Therefore, it highlighted the important of looking into metal binding proteins that have higher specificity to the metals we are targeting.

We found that our preparation for this meeting was poor and as a result our questions not being tailored appropriately for the representatives we interviewed. To resolve this issue for future stakeholder engagement we researched the participants prior to conducting the interview. We also found it difficult to control the direction of conversation in the interview. To prevent this in the future we decided to conduct interviews with one representative when possible.

Act:

Acting upon the information we received from this meeting we utilised the resources provided which helped to broaden our understanding of the issue we are trying to tackle and allowed us to consider the wider context alongside the local issues we were already considering. We have utilised their ICP OES machine to analyse the samples collected from the Wheal Maid site.

Additionally, they suggesting looking into the bacteria that were able to survive in the acidic conditions of polluted mine water. Particularly those found on the rhizome of the roots of reed beds used in the passive treatment of Wheal Jane, therefore we researched into this to consider the bacteria that we could transform, in the future, with our genetically modified pili, so that they could survive in realistically acidic conditions of the contaminated water.

We have also considered the potential issue of DNA exchange, there is potential to knock out f pilus gene involved in conjugation to prevent this from occurring.

Acting upon the representatives suggestion we contacted other NGOs for their policies on the use of GM organisms in our filtration system, we have learnt that their policies often change on a case by case basis. However, after explaining the nature of our project some of the contacts continued to speak about GM crops which suggests an education barrier. GM crops are often the main fear that arises when speaking about GM and it is important to educate society about their other possible uses.



Extra Info:

    We found that these Greenpeace representatives were particularly informative with highlighting the criteria we need to fulfil to make our project as appealing as possible. This included:
  • Small amounts of highly valuable metals may be worth extracting for value. This would help us when trying to ensure the cost of extracting the metals is less than the value of selling on the extracted metals.
  • Looking into beneficiation to enrich the product we extract.
  • If it was possible to obtain purer extractions this would result in lower shipping costs.
  • Looking into whether the system can work with insoluble metals and what is the difference in concentration between the soluble and insoluble concentrations in our sample.

Plymouth Marine Laboratory

Engage:

Two members of the team went down with one of our advisors to Plymouth to discuss the project with a representative from Plymouth Marine Laboratory. His research covers a very broad range of topics so we found that he had a lot to offer in terms of both advice and equipment. He had in the past worked on similar bioremediation products involving Wheal Jane and acid mine drainage, making him an important stakeholder for our research. A great deal of his work looks at bridging the gap between research and industry, an area of interest to us at this stage.

We had a number of areas on which we thought that this stakeholder might be able to advise us, and therefore went to Plymouth prepared with questions. These questions concerned the practical implementation of our filter, including the logistics of hydrocyclone used, methods of bactericide and immobilisation of bacteria. Other questions were related to end product processing, such as the ideal modes of phase separation. We also wanted to know about the most practical and cheap method of separating sediment from our inflow, and mixing the reactants.

Based on his own research into Wheal Jane, it was suggested to us that metal extraction on such a scale, especially when the government are involved, is a serious undertaking for a short project.

Anticipate:

His experience was extremely useful in helping us to answer questions that demanded empirical knowledge. For example, his own research into the efficacy of UV vs copper alginate beads told us that in a system consisting of pipes and flowing water, the latter would be far more effective. This reinforced our decision to test the efficacy of UV radiation as a bactericidal measure, on our own strains of E.coli and to consider copper alginate beads as a future prospect.

His experience in culturing biofilms was also of great use. While we had been attempting to use loose particulate media as growth surfaces, we reconsidered this option in light of his advice. We were shown a hydrocyclone that they had used for a slightly different purpose. This led to inform us that a significant requirement of our filter unit would be to maximise exposure of our cells to the solution, ideally in a way that is energetically cheap.

<

Reflect:

The meeting allowed us to take a number of aspects of our project to the next level. It became clear to us that while our initial ideas had been valid, they required a degree of tweaking, in order to achieve the results that we wanted.

We realised that we were on the right lines with the hydrocyclone as an energetically effective method of create a vortex, and that the metal binding reactor was a valid approach. It was evident that slightly new methods of culturing biofilms and killing errant bacteria were required.

It also seemed apparent, that , at least given the current state of our filter unit, its strength lies in its cheapness and portability. Whilst it may not yet be ready for large scale filtration, the problem of heavy metal pollution is widespread, especially in LEDCs. There is therefore a need for such a system outside of the UK.

Act:

The implementation of our project includes the use of polypropelene scaffold torus structures as a growth surface and chlorhexidine gluconate mouthwash as a biofilm inducer as suggested by this stakeholder. Additionally, we conducted our own experiments to test the efficiency of UV concluding that it was not effective enough for our purpose. Therefore, certainly any future developments of this project would look into copper alginate beads as a method of bactericide. Additionally, the filter unit would build on the principle of the hydrocyclone and maximal exposure of ligands and binding proteins.

Taunton Aquarium

Engage:

During the early stages of our project, a few members of the team were lucky enough to go and visit Taunton Aquarium. For some time, we had been unsure of how our filtration system would work and we had hoped that the specialist owner of Taunton Aquarium may have been able to shed some insight into how he keeps his aquarium water so clean. We were also very interested in his use of fluidised media reactors, and hence bacteria, to remove nitrates from the water.

We maintained fairly regular contact with our stakeholder at Taunton Aquarium. His initial ideas were crucial for the early development stages of our filtration system. By engaging on a regular basis, we were able to keep him in the loop with any new developments. He was then able to advise us on different courses of action. We also bought some equipment from Taunton Aquariums, including a fluidised media reactor, some aragonite sand and a DC pond pump.

Anticipate:

During the visit, it became clear that we had to anticipate how our design would compete with filtration systems already available on the market.

Also, we needed to explore containment issues a lot further; while Taunton aquariums used bacteria as part of their system, containment was not so much of an issue as it was not GM bacteria. They use ozone to kill bacteria in the water, however, as it is not GM bacteria it is not used to kill all of the organisms as we would require. We spoke to the representative about our idea of using UV as our biosecurity mechanism, however he expressed concerns about it potentially not being as effective as we may required therefore we tested this experimentally, concluding that it would not be suitable for our purpose.

Additioanally, he suggested that if we are to develop a system with which we can filter water straight from the source, we need a preliminary stage of filtration with which we can filter larger sediment out of water in order to prevent blockages in the fluidised media reactor. He discussed the possibilities of a hydrocyclone, used in industry scale water treatment centres and talked with us about their different uses.

Reflect:

Our meeting with the owner of Taunton aquarium was very interesting. He was extremely knowledgeable on both his own system as well as other systems.

Act:

Following on from our initial discussion with our stakeholder at Taunton Aquarium, we immediately decided that the use of a hydrocyclone was worth pursuing. This was due to the lack of moving parts, low running costs and ease of manufacture. Our idea to use a metal binding reactor was reinforced by his expertise, and we purchased a fluidised media reactor immediately to modify for our purpose as a metal binding reactor. He also suggested using silica sand as the media to use inside our filter due to its resistance to the high acidity of polluted mine water. We tested this type of media by culturing the bacteria on it, imaging samples and then performing experiments to test its effectiveness. We also bought a lot of specialist equipment from the aquarium to use in our applied design experiments.

South West Water

Engage:

On the 15th of August we took a trip to Totnes to visit one of South West Water's treatment plant to better understand the how bacteria are used in current methods for the bio-remediation of water. Once there, we were greeted by a Scientist and Engineer currently working at the plant who agreed to participate in an interview so that we could ask a number of pre-arranged questions and gain feedback on our filter design.

Questions and Answers:
  1. What is South West Water policy about using GM organisms?
  2. As far as they know South West Water (SWW) does not have a particular stance on the use of GM organisms. Their approach to new technology is that it must be proven to be robust and reliable. SWW is interested in any technology that has the potential to improve the efficiency and reliability of their operations.

  3. Do you use any form of bioremediation in your current operations? If so, how is bio-security ensured?
  4. Yes. Bacteria is used to digest compounds in the 'sludge' such as ammonia (which is very toxic to fish). However, as the bacteria used by South West Water is not genetically modified there is not a need to ensure that 100% of the bacteria is removed from the outflow, unlike in our case. Therefore, since there is no zero target, the current method to disinfect the water using UV lights to significantly reduce the population of bacteria.

  5. How do you monitor the water quality in the plant?
  6. The Urban Waste Water Directive from the European Commission requires that once a month the water is monitored for a period of 24 hours, although the plant may monitor more frequently during peak periods. This provides seasonal information about the water entering the plant. Furthermore, depending on the consents at the particular works, other quantities may be monitored including: Biological Oxygen Demand, Chemical Oxygen Demand, Suspended Solids (Turbidity), Ammonia, Phosphate or other contaminants defined in the Urban Waste Water Directive 1991 (including metal ions).

  7. What are the most common pollutants in the water you receive?
  8. The majority of pollutants are organic pollutants, ammonia and non-biodegradable material.

  9. Do they currently use hydrocyclones in any of their operations?
  10. Hydrocyclones are sometimes used in the removal of grit. They gave the impression that hydrocyclones were not frequently used in sewage treatment, although, similar devices such as a centrifuges to dewater 'sewage sludge' are much more common.

Questions they had for us after explaining the project and the filter design.
  1. How would we tell when the media in the metal binding reactor is saturated?
  2. Steve suggested that we could use a similar method employed be SWW called ‘backwash’ to check that the filter is working. For this we would require two or more filters in series such that one can be turned offline without leading to a complete shutdown. Water is passed through the offline filter and tested. The backwash can then be circulated through the rest of the plant. It’s important to note that the backwash will be more concentrated than the water usually running through the plant and therefore the plant must have the capacity to cope.

  3. What is the waste associated with our project and how will we dispose of it in a way that doesn’t cause environmental harm?
  4. Both interviewees raised concerns over how we would deal with the media when it does become saturated. Firstly the saturated media would need to be removed from the reactor and then replaced. If we needed to send people to manually remove it, how dangerous would this be? Secondly where would we then store this waste? One of the representatives turned our attention towards waste transfer notes which regulate the removal and transportation of waste. She directed us towards European Waste Catalogue codes (EWC codes). They both express that from a business standpoint we should look more closely into how to extract the metal ions to then sell on, in an attempt to make our process economically viable.

Anticipate:

Many technical issues with our proposed design were raised during the interview. Firstly in order to improve on the existing technology it was made clear we that we need to limit our wastage, something that SSW do very effectively by selling organic waste on as compost or by using collected methane gas to fuel operations within the plant. This means devising a method of either recycling the substrate that our E.coli grow and/or extracting the metals ions that could potentially be sold increasing the income of the plant. If not possible we need to consider the environmental impact of the resultant waste. The waste from the metal binding reactor contains our GM organism, how can this be stored safely?

Reflect:

This was a very informative meeting and we felt very grateful to have receive feedback from industry experts in waste water treatment. What was particular helpful was the opportunity to hear their concerns and examine our project for important flaw in our design which will be addressed in the weeks following the interview.

Act:

Since the trip to South West we have tested the effectiveness of UV radiation as a safe guard for GM bacteria. We felt that it was necessary to conduct our own experiments into testing this as although much of the literature suggested that the use of UVC light is sufficient to destroy bacteria, the exposure time is a limiting factor within our design and also that eradication of GM organisms is more demanding. The results of our experiments show that UV is not suitable for our bacteria owing to a large predicted escape frequency, click here to see a full account of the results. Therefore, we have explored alternative ways of ensuring bio-security through engagement with other stakeholders who have experience or knowledge surrounding bio-remediation. Through these further communication we were introduced to the use copper alginate beads.

The waste associated with our system was brought up in this meeting. Therefore, we acted upon this concern and have found a way, using EDTA, to kill the genetically modified E. coli, and separate the metals from them so that they can be sold on in another form. This solves two problems as it will reduce the waste associated in addition to providing further funding.

Additionally, we looked into resolving the issue of knowing when the metal binding reactor is saturated by developing a mathematical model that informs when the E. coli in the metal binding reactor are too saturated to still be efficient, therefore, the filter needs changing. This can be used in conjunction with the 'backwash' method suggested by the representatives. The model can help inform how often the water should be tested and can be rescaled for more accuracy based on these results. See our modelling page for further information on this.

Veolia Water Treatment Plant

Engage:

On the 10th of August, we went for a tour, around the Veolia Water Treatment Plant, led by a Technical Process Electrician. We wanted to learn about the specifics of the current treatment at the Wheal Jane site, which is a current treatment site for the polluted mine water from the Wheal Jane mine, therefore, we came prepared with a set of questions based on gaps in our knowledge that we were unable to find in literature. The questions and answers are included below.

  1. What is the current treatment method?
  2. Lime is used to precipitate the metals out of the solution, then anionic polyacrylamide is added to cause coagulation of the metals. This forms a sludge that falls to the bottom and the clean water flows over the top; this is how they are separated. The sludge is recycled around the system until it reaches a certain thickness. The water is checked to see if it has reached the optimum PH level. This is at least 9.1 to ensure that manganese is precipitated out of the solution because it dissolves at a higher PH to the rest of the metals. The clean water then runs down a stream into the valley.
  3. Where does the lime come from?
  4. Buxton, Derbyshire (they have 200 years’ worth of lime left).
  5. What are the flow rates they use?
  6. 10 pumps produce a combined flow rate of 500/600 l/s.
  7. What are the diameter of the pipes?
  8. 10 pipes at start have diameter of around 4 inches.
  9. How long does the process take?
  10. 20-30 minutes.
  11. How costly is it?
  12. £1.5 m per year to run.
  13. What happens to the metal that is removed from the water?
  14. A sludge is formed and dumped into Clemows Valley Tailing Dam.
  15. Who is responsible for cleaning up the water?
  16. Funding is provided by DEFRA, the Environmental Agency regulates the clean-up and Coal Authority is in charge of the clean-up of all UK mines.

Additionally, we were provided with clear details of the lime dosing process at the treatment plant which is outlined in the Current Methods page on our wiki. Follow-up emails were welcomed at the end of the meeting. Once developing our model, we emailed to find out their views on it. The feedback was that we had included similar bases to those they require at their plant.

Anticipate:

Visiting the plant allowed us to anticipate technical aspects to be considered for our filtration system, by understands the scale that current operations are working at to clean up the water at the Wheal Jane site. Additionally, understanding the material their pipes are made from, so that they can withstand the high acidity of the water, has helped us anticipate potentially needing to change the material used for metal binding reactor and hydrocyclone so that they can withstand the highly acidic water.

Reflect:

Understanding the drawbacks of this method reinforced the motivations for our research. The drawbacks include: high running costs, high carbon footprint from transporting lime from the limestone quarry in Buxton, Derbyshire, and that the metals aren’t extracted, they are contained within the sludge therefore the Tailing dam of sludge is now 69 metres high. This helped us reflect on how our project is better than this current method.

Approximately ¾ of the sludge consists of lime slurry therefore our method would reduce the waste by a significant amount as we are eradicating the need for lime. Additionally, there is potential, due to our method of extraction, to obtain the metals extracted from the water and into a form in which they can be sold on. This would be particularly useful as then the money gained from this could be used to pay for the running cost of the filtration system.

Act:

We were provided with details of flow rates which provided useful when running the model as we were able to run it at the industrial scale as well as at the scale of our prototype.

Additionally, we realised the scale of waste associated with removing metal ions from polluted water, therefore we taken this into consideration during our research by looking into ways of dealing with the waste associated with our filtration system. Click here to find out more about this.

Extra Info:

  • Water is PH 3.4 before going through their treatment plant.
  • In the 1992 flood at the Wheal Jane site 45 million litres of acidic minewater poured into the Carnon River and Fal Estuary.
  • The fishery and tourism industry have been affected and the fishery industry has only just recovered.
  • They have filled 4/14 paddocks in the tailing dam with sludge.
  • 702000 tonnes of hazardous waste have been cleaned in 17 years the plant has been opened.
  • 28 tonnes cleaned in a standard week but can be up to 100 tonnes.
  • Sludge is circulated to save limestone.
  • 10 inflow pipes
    • Cost £13000 each
    • Made of stainless steal.
    • Steal inside the pipe is not in contact with the water as it is reinforced with rubber on the inside and outside.
    • They are flexible pipes that don’t need replacing.
  • Lime is stored in powder form, each storage tank had 35 tonnes of lime but can store up to 40 tonnes.
  • White lime is added to reaction chamber (this is where it begins to look orange due to iron in water).
  • PH measurer tells valve when to open/close – it can be opened to the specific amount required.
  • After one pass through the water is checked to ensure the it meets water standards, for example there is a triple validation for pH, before entering a The Treated Mine Water Clemons stream
  • They use an ICP machine to check metal concentration.

Internal Meetings

Engage:

Team meetings, both with and without our supervisors, were a regular occurrence during the project. These meetings were arranged with a key focus in mind. We would meet once a week and update each other on the progress of each faction of the team. Meetings also took place following new information being obtained following contact with key stakeholder to modify the direction of our project.

Reflect:

We also reflected on our motivations behind applying for iGEM and how to best utilise the skill set we entered iGEM with. This made us consider the track we would register for along with which prizes we would apply for. Reflection played a recurring role in our internal meetings. Towards the latter stages of the project we often discussed our worries and the negative feelings we would have when it feels like little progress is being made.

Act:

We made key decisions on where we should take our project based on our reflections. The direction of our project to enter an environmental track was based on our internal motivations for a desire to change the world for the better. We also had aspirations for dealing with a local issue that has potential to be applied to numerous cases worldwide as we felt we could empathise most with this issue and it would be most useful to solve. These internal motivation led us to decide to conduct a project related to the metal contamination caused by historic mining. This requires the construction of a filtration system for the implementation of our project, which met the skill set and ambitions of our team due to having a large proportion from the mathematical and physical sciences. This led us to focus on applying for the applied design, integrated human practices and modelling prizes. We felt these prizes complemented each other as to develop an effective filtration system we needed to fully understand the issue, which we can only obtain through conducting through our integrated human practices. Our model was also key for our filtration system as we wanted to create a tool that would aid the future implementation of our project, acting as an interface for the end user.

Anticipate

In the final few weeks of our project pressure was rising to get tasks completed and ensure medal requirements were met. Due to a mutual team decision made at the beginning of the project where we decided to let everyone get involved in any and all parts of the project it consequently meant that no one person was specifically in charge of ensuring the completion of each . We realised that this approach would cause problems further on if it continue.

Engage

At a group meeting to catch everyone up on each part of the project, as was usual on Friday afternoon, we took the opportunity to raise this issue.

Reflect

Although we all enjoyed learning and developing new skills throughout the project we all wanted to deliver the best project possible. We recognised that to do this we would have to commit ourselves to specific aspects of the project (e.g. modelling, applied design, wiki, and human practices) so that individuals with the most knowledge, enthusiasm and skills were in charge of completion of it.

Act

We decided that it would beneficial to the project if we assigned one or two people a task. By making people each of us accountable for different aspects it would make our individual responsibilities clearer, make it easier to assign role for those who did not have much currently to do and it would motivate all of us to meet our targets. We also set mutual agreed deadlines so we could try and plan the weeks leading up to the wiki freeze. However it proved difficult to keep to these deadlines due to set backs in the laboratory. Additionally for some tasks, such as the wiki and the model, we continuously found different ways for improvement and therefore it improved difficult to recognise when it had been completed.

References

*All the information in the above section was provided by a the stakeholders.*