Team:Amazonas Brazil/HP/Silver

Wiki_iGEM_Amazonas

SILVER

CRISPeasy IMPLICATIONS AND ETHICAL ISSUES

CRISPR revolutioned genome editing. When compared to older techniques, CRISPR machinery has overcome obstacles as efficiency, experimental time and, mainly, expenses. One milestone of this scientific ascension is its power of democratization: to turn available cutting-edge techniques to researchers from different nationalities, distributed worldwide, in a way that everyone has tools to develop research without demanding a great lab structure and huge amounts of investment. This democratic revolution that CRISPR has brought to science is fantastic and goes beyond the importance of promoting science for all. It’s in the building of this future that we will progress faster, not only in discovering of basic aspects and fundamental researches – as in comprehend genes function – as far as CRISPR applications that will change our reality, like genetic editing of cancer cells.

A tremendous range of futuristic possibilites can be turn into reality through CRISPR/Cas9-based genome editing system. Even with these rapid advances and the vast applications of this technique, it is essential to pave the way to discuss the social and ethics implications of CRISPR, taking into account the impact in the world and society. By standardizing a “toolbox”, CRISPeasy, to be implemented on standardized genome editing in bacteria, we considered fundamental to be aware of it and discuss the implications of our project.

The CRISPeasy toolbox was developed to expand and further facilitate the genome engineering applying standardized BioBricks, reducing time for designing, assembling and building devices. Therefore, we aim to provide to iGEM communitythe power of genetic editing in a few steps. We believe that by through applying bioengineering principles, like standardization and abstraction, we can go fast forward.

Fundamental research provides essential outputs, which is, broadly, the knowledge building block for advancing applied research projects. Bo Huang said in a interview for Nature that he and his lab team took two months to adapt CRISPR to image study in his project “Imaging genomic elements in living cells using CRISPR/Cas9”. Thus, he highlighted that if there were as a more basal knowledge, like design optimization of guide RNAs, it would took less time and required less struggles.

Then, we could realize the value of “foundational advances”, that contribute so much to improve the technique, regarding its efficiency, off-target effects and to comprehend CRISPR utilization, that over time might be applied to more complexes organisms, as humans and other animals. Until then, CRISPR needs to be even more well fundamented.

The encouragement of this kind of research cannot cease, since the improvement is continuous. By optimizating (and improving) a specific element of CRISPR, as we did with CRISPeasy toolbox, doesn’t represent the end, but the beginning or continuity to collaborations and related projects. We considere this an important implication of our project.

One of the implications about the development, simplification and free-to-use access, the Foundational Technologies, it’s our exposure to dangers, which can be natural or artificial, caused unexpectedly by bioengineering. However, the analysis of these risks cannot be direct – What? Drew Endy addresses this question in his article “Foundations for Engineering Biology”, and cites as example the advent of DNA synthesis, that made possible for the Spanish influenza pandemic virus to be “ressurected”. With the article of Trumpey T. M., called “Characterization of the reconstructed 1918 Spanish influenza pandemic virus”, it was possible to understand details about its virulence.

Now, it is possible to make Smallpox genome, with easily accessible DNA sequences. The free-to-use access of these informations allows to construct variants of this vírus, and many others as well. However, the emerging of DNA synthesis could quickly and efficiently come with solutions to these risks, as occurs when we deal with natural biological risks, Through high capacity of response to risks, vaccines and its precursors could be synthetized e quanto a análise a esses riscos, por exemplo, poderia ser usado codões de ORF de patógenos synthetized and optimized to express recombinant proteins.

Even with this high capacity of analysing and responding to risks, researchers are not exempted from taking neccessary actions to ensure biosafety. It is fundamental to considere carefully the safety implications before and during the research fulfilment. As Andrea Ventura, researcher at the Memorian Sloan Kettering Cancer Center in New York, tells Nature in interview with Heidi Ledford, it is important to foresee even remote risks and that, when working with lung cancer model in mouses using CRISPR, he had carefully designed guide RNAs that don’t cleave human DNA, highlighting that “It’s not very likely, but still needs to be considered”.

The risk analysis for Foundational Technologies, depend on its applications, that can impact positively or negatively. We saw that these technologies show potential to solve these conceivable risks. In a nearer moment, the most important and certain about these Foundational Technologies is the accelereation of continuous and constructive experimental research. A scientist using technologies that optimize the phase of experimental processing, will have an increase in productivity, reducing experimental time and improving the efficiency of research.

A resposta para o futuro ao que se diz sobre segurança biológica não está em limitar o desenvolvimento científico, e a disseminação do conhecimento através do acesso free-to-use para todo o mundo, dessa forma estaríamos parando abruptamente o desenvolvimento científico, e impedindo ou dificultando a descoberta de melhorias para, tratamentos, curas, na área biomédica e o aprimoramento de técnicas e compreensão de mecanismos na bioengenharia. A resposta está no desenvolvimento bem sucedido e em nossa agilidade para detectar, compreender e responder aos riscos biológicos, sejam eles naturais ou artificiais.

It is necessary to put society and scientific community closer, since they are intimately related and influence each obter. Just as society drives the direction science goes, science also influences society’s lifestyle, in the way we eat, what we think and so on. Jennifer Doduna said in interview about CRISPR for The Guardian: “History and evidence points to the fact that when we inspire and support our scientific community we advance our way of life and thrive.” Therefore, it is important to keep encouraging society as a whole to support a global community for Synbio and be aware of its importance, so together we can move further to advance bioengineering.

Building Synbio legacy in our community

One of the greatest achievements of Synbio is to be broadly present in diverse backgrounds: from high tech institutes to local communities all around the world. We stand proudly as the first iGEM team to work with CRISPR in Latin America and the first research group to work with it in the Amazon. Therefore, we felt the urge to implement the first building block of Synbio (and CRISPR) in our community, through educational engagement.

On our community, we raised awareness for Synbio and the significance of building foundational advances to standardize CRISPR, through broadcasted interviews and social media, highlighting CRISPR as a revolutionary technique that has plenty of potential to solve real world problems. To the academic community, we kept promoting Synbio principles, by giving lectures and workshops introducing concepts such as biological parts and standardization. We also mobilized all spheres of society into discussing the importance of science and its role as powerful and transforming tool to improve human life and the world, by organizing the March for Science at our city, in partnership with Brazilian Society For Science’s Progress (SBPC in portuguese).

Our team and everyone who engaged at the March For Science in Manaus, capital of Amazonas state.

In addition, we tried not to stick only to our regional community, but in showing the world what the Amazon has to offer in terms of Synbio and cutting-edge technologies. By lecturing at Campus Party - the biggest event of technology in the world - we’ve got the chance to reach a more distinct audience than that we were used to, since Campus Party is more appealing to a public which has a technologic background but not necessarily a bio-tech one. For the first time, many of these people from different scenarios heard about CRISPR and its outstanding perspectives, and that all of this revolution in genome editing is not strictly happening in the biggest institutes of research in the world, but in the Brazilian Amazon as well.