Team:DTU-Denmark/Hardware

Hardware - Spectrophotometer

The creation of a pocket-sized spectrophotometer allows for more applications. A spectrophotometer is now available to more people in developing countries, due to its low cost, size, and convenient design. The spectrophotometer utilizes standard cuvettes and attaches to a smartphone’s flash and camera, making it more accessible.


Our 3D printed spectrophotometer can be attached to the camera and flash of a Sony M4A phone. The spectrophotometer is created with a cuvette holder and a bandpass filter (region: 335-610 nm). This allows only blue light to be sent through the sample that consists of blood plasma.


The spectrophotometer works by utilizing the flash on the phone as a lightsource. Silver surfaces are used to reflect the light back in the direction of the camera lens, where the light passes through a filter that removes all but the blue colour of the spectra. The remaining light passes through the sample before reflecting back to the camera lens where a picture is taken. The picture is then analyzed by the SV Detector app on the phone (see more under software).


The spectrophotometer’s 3D-model can be easily modified to fit most smartphones as well as any optical filter. The fact that it only needs the smartphone and does not rely on an arduino or other external devices, nor needs any external power source, means that it is very portable.


The three substrates that were used in the app should at least give a dilution of ~50% at 30 minutes (the time that the samples are supposed to be incubated for, see Incubation Chamber), making the accuracy at 20% more than appropriate.


Mechanism of Action

Our proposed solution utilizes the Scavidin present in the composite parts by having a chamber (see Incubation Chamber) with biotin beads that BioBricks BBa_k2355313 and BBa_k2355302 could bind to. After possible cleavage, the chromophore or enzyme would be released from the chamber and would be allowed to flow to a second chamber through a filtering system. The sample would then be removed from the second chamber and placed in a standard cuvette that is then placed in the spectrophotometer and analysed via the app.


Schematic
Figure 1: The version of the spectrophotometer used for testing in order to account for the large optical filter.

Testing of the Spectrometer

The only available resin was white. However, this problem can be solved by printing the spectrophotometer in black resin. The effect of white resin was mitigated during testing by covering the spectrophotometer in black putty.


Schematic Schematic
Figure 2: A “loaded” spectrophotometer with an optical filter and a cuvette (left). The spectrophotometer with the bottom side covered in black putty (right).

The spectrophotometer was tested both without an optical filter and with one. The raw pictures are shown in figures 3a-3d.


Schematic Schematic Schematic Schematic
Figure 3: from left to right is shown the raw output of the spectrophotometer without the filter at 25% amilCP dilution (1); the raw output of the spectrophotometer without the filter at 75% amilCP dilution (2); the raw output of the spectrophotometer with the filter at 25% amilCP dilution (3); and the raw output of the spectrophotometer with the filter at 25% amilCP dilution (4).

FIND US AT

Mail Instagram Facebook Twitter
DTU BIOBUILDERS
DENMARK
DTU - SØLTOFTS PLADS, BYGN. 221/006
2800 KGS. LYNGBY

MAIN SPONSORS

Otto Mønsted Lundbeck fundation
DTU blue dot