Team:Greece/Description scripts

function importScientific(){

/* Sub section 1 and General (titles and src) */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/0c/Greekom_subsection1.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* General - Execute once */

   $('#label').html('At a glance');
   $('#mode').val('simple');
   $('#label').css('right', '199px');

/* Header */

   $('#header').html('Project Description');
   $('#sub_header_1').html('BIO-LOGICAL INFORMATION PROCESSING');
   $('#sub_header_3').html('APPLICATIONS OF BIOLOGICAL COMPUTERS');
   $('#sub_header_4').html('pANDORRA: A BIOLOGICAL COMPUTER TO TREAT CANCER');
   $('#sub_header_5').html('WHY COLORECTAL CANCER?');
   $('#sub_header_6').html('TRANSFERENCE TO CANCER CELLS');

/* Images */ $('#image_1').attr({'src' : 'https://static.igem.org/mediawiki/2017/3/36/Greekom_image1.png'}); $('#image_2').attr({'src' : 'https://static.igem.org/mediawiki/2017/b/b1/Greekom_image2_glance.png'}); $('#image_3').attr({'src' : 'https://static.igem.org/mediawiki/2017/0/09/Greekom_image3_glance.gif'});

/* Section 1 */

   $('#sub_section_1').html(data);
   console.log('This is from console alone' + data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 2 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/d/d0/Greekom_subsection2.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_2').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 3 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/3/34/Greekom_subsection3_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_3').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 4 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/2/21/Greekom_subsection4_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_4').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 5 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/06/Greekom_subsection5_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_5').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 6 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/c/ca/Greekom_subsection6_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_6').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

/* Sub section 7 */

  $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/0/07/Greekom_subsection7_glance.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* Section */

   $('#sub_section_7').html(data);

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});

$('#Description').removeClass('grayscale'); $('#display_box').css('height','4150px');

}

function importGeneral(){

 $.ajax({
   "url": 'https://static.igem.org/mediawiki/2017/1/12/Greekom_text1.txt',
   "type": "GET",
   "dataType": "text",
   "timeout": 10000,
   "data": {}

}).done(function(data, textStatus, jqxhr) {

/* General - Execute once */

   $('#mode').val('scientific');
   $('#label').html('In depth');
   $('#label').css('right', '210px');
   console.log('This is from console alone' + data);


/* Header */

   $('#header').html('Project Description');
   $('#sub_header_1').html('BIOMOLECULAR COMPUTING');
   $('#sub_header_3').html('APPLICATIONS OF BIOMOLECULAR COMPUTERS');
   $('#sub_header_4').html('pANDORRA: PROGRAMMABLE AND OR RNAi ASSEMBLY');
   $('#sub_header_5').html('COLORECTAL CANCER');
   $('#sub_header_6').html('A HOLISTIC CANCER THERAPY');

/* Section 1 */

   $('#sub_section_1').html(data);
   $('#sub_section_2').html("Being assembled exclusively from biomolecules, these circuits possess two highly advantageous characteristics; being compatible with in vivo applications and"+ "exhibiting the remarkable information processing potential of biological systems which opens up opportunities for a variety of applications."+
"
  • 1. Creation of intelligent diagnostic systems capable of molecular profiling a disease state and subsequent emission of a detectable signal. [3]
  • "+ "
  • 2. Creation of intelligent therapeutic systems capable of selective actuation upon a predetermined molecular profile. [3]
  • "+ "
  • 3. Creation of biomolecular high-throughput assays for RNA profiling. [4]
  • "+ "
  • 4. Application of highly parallel and energy efficient computing for computationally complex problems. [5]
  • "+ "
  • 5. Information storage and retrieval. [6]
And many more yet to be imagined...");
   $('#sub_section_3').html("MicroRNAs (miRNAs) constitute ideal building blocks for biochemical logic circuits as they inherently implement a NOR gate upon the gene they regulate. [7] In fact,"+" any logic formula can be computed by miRNAs acting upon multiple transcriptional and post-transcriptional regulators and synthetic miRNAs encoded by them. [2] Therefore, we focused our "+"efforts on developing a toolbox of highly modular and interchangeable parts, sufficient to assemble a plethora of customizable, multi-leveled circuits, enabling easy manipulations of miRNA inputs "+"as well as circuit topologies to accommodate a less arduous application of classifying circuits by prospective iGEM teams and the entire SynBio community. We applied our engineered circuit in our "+"cell line of interest, Caco-2, to actuate selective protein expression upon integration of multiple miRNA inputs, elicited from our model as quintessential to optimize our circuit’s classifying "+"ability, demonstrating the feasibility of approaching colorectal cancer therapeutics with molecular-profiling-based expression systems of proteins of therapeutic potential.");
   $('#sub_section_4').html("Colorectal cancer (CRC) is the second most common cause of cancer-related death in the US. [8] CRC's lifetime prevalence equals 4.7% and 4.4% for men and women"+ "respectively, whereas the 5- and 10-year survival rate is 65% and 58% respectively. An array of novel methods and approaches have been described over the last years based  on our increasing"+ "knowledge of the molecular events that contribute to carcinogenesis and tumor proliferation, however the go-to method for CRC's treatment remains surgical excision along with chemotherapy (adjuvant "+"or neoadjuvant) and radiation therapy. [9] The aforementioned therapeutic approaches suffer from one or more of the following: nonspecific targeting of cancer cells, insufficient penetration to "+"the target tissue and inadequate cytotoxicity, all of which are associated with increased mortality and decreased quality of life. [10]");
   console.log('This is from console alone' + data);
   $('#sub_section_5').html("Towards our vision of an RNAi-based logic circuit application to cancer treatment, inspired by the bottom-up philosophy of synthetic biology, we could not help but "+"envision what characteristics the ideal cancer treatment should entail. Our notion essentially described a controllable agent to transfer the classifier plasmids, providing selective targeting, "+"enhanced motility and therefore penetration to tissues of interest as well as responsiveness to external stimuli operating as control signals. Bacteria are surprisingly well suited to perform "+"this transference, due to their inherent propensity to favor colonization of tumorous tissue owing to the advantageous growth conditions that cancer microenvironment exhibits as well as the fact "+"that they naturally possess biological mechanisms which can be exploited by means of synthetic biology to perform the aforementioned functions. [10] We engineered a strain of E. coli capable of "+"selective binding to colorectal cancer cells and expressing invasion machinery under the control of a quorum sensing system so as to achieve cell density-dependent invasion, associated with "+"tumorous microenvironment.");
   $('#sub_section_6').html(data);
   $('#sub_section_7').html();

}).fail(function(jqxhr, textStatus, errorThrown) {

   //Write code to be executed when the request FAILS.

});


$('#Description').addClass('grayscale'); $('#display_box').css('height','4650px');

}