“Design is the distinguishing activity of synthetic biology”
This paraphrased quote, originally coined by Herbert A. Simon to describe engineering, perfectly outlines the cornerstone of synthetic biology and the iGEM competition: the rational design of biological circuits by modular parts. Fueled by pure excitement for the promising and novel field of synthetic biology, we embarked on a multi-faceted journey into the world of iGEM and designed a bimodal project. The principal pillar of our efforts has been pANDORRA; a programmable AND OR RNAi Assembly platform engineered to optimize logic circuit design and implementation. We applied our modular assembly platform to build a multi-input RNAi based logic circuit to specifically target colorectal cancer cells. Adjuvantly, we concocted a bactofection system performing cell-specific adhesion and bacterial density dependent invasion and plasmid transference.
We aimed to develop a fully-predictable regulatory program, exploiting the distributed cellular availability of specific molecular input to differentiate various cell types by the production of a protein output. Following the engineering cycle, as described in [1], our first step was “Specification”. Our end goal at the beginning, was quite singular: create a molecular logic circuit, a biocomputer, that can trigger cell death or produce fluorescence when a certain expression profile is found in a cell. Before delving deeper into the inner working of our logic circuit design, let’s review two fundamental notions concerning the computing of such circuits:
- 1. The nature of the biological switches. Switches are the physical entities that implement a universal set of logic gates, thus enabling computation. A plethora of biomolecules can be utilized upon which to build switches. Between gene-based, RNA-based, protein-based etc. biological switches, we chose trans-acting RNA switches and specifically miRNAs. Thanks to their ability to regulate a large fraction of the human transcriptome and natural implementation NOR logic [2] when multiple ones regulate the same gene, miRNAs have been extensively studied in mammalian systems. Moreover, they are excellent internal inputs since miRNAs are found to play crucial roles in the disease spectrum [3].
- 2. The rudimentary circuit abstraction. In order for a miRNA-based cell profiling to function, in accordance with seminal papers of the field [2, 4-7], a number of miRNA markers are selected and the circuit computes an AND gate with these markers in order to perform a classification task. Since miRNAs are molecules exerting solely inhibitory effects on expression, a repressor is required to repress the output, “linking” the high miRNA-markers that inhibit (directly or indirectly) the production of the repressor and the low miRNA-markers that typically target the output gene. As a result, we needed to select the nature of the repressor, with options including a transcriptional one such as LacI, a post-transcriptional one like a synthetic miRNA or both, as well as the in-depth topology, by determining the layers of the circuit (two or more). More elaborate architectures can be employed by utilizing this basic architecture.
In conclusion, we set our “classification” task as follows:
*The miRNA expression profile should be predetermined in order to discriminate Caco-2 cells from healthy cells.
Εxperimental classifiers have been designed by trial-and-error, by tweaking the parameters of the network in order to identify the optimal architecture and Boolean expression, or in a semi-manual fashion, via ranking and manual selection of differentially expressed miRNAs retrieved from databases produced by large scale studies. [8] There are several constraints that dictated these approaches, for example the inadequacy of basic building blocks to better assemble and characterize various mammalian classifiers and the lack of powerful tools to automate logic circuit design based on miRNA molecular switches. Although daunting as a task, we set off to address both of these issues by:
-Creating pANDORRA (programmable AND OR RNAi Assembly) in order to produce a large number of mammalian parts, which can be used for a bottom-up construction of any conceivable logic circuit based on universal logic gates.
-Increasing the functionality and directionality of our assembly process by following a step-by-step cloning workflow and using standardized primers or overhangs after the integration of extensive technical feedback received by Stamatis Damalas. Click here to check it out.
-Employing a computational framework to facilitate the selection of circuit inputs (miRNAs), form the logic expression and simulate optimal circuit-performance in different topologies. Check out our model.
As in mature engineering clades, models simplify the real work and facilitate design in ideal conditions. Other models then evaluate the proposed designs more thoroughly and either send the designers back to the drawing board or to the test bench; that is the essence of our design approach: a progressive dance where modelling and design come ever closer together.