Difference between revisions of "Team:UNOTT/Design2"

Line 150: Line 150:
 
   <figure><a href="https://2017.igem.org/Team:UNOTT/Design3"><img src="https://www.iconexperience.com/_img/g_collection_png/standard/256x256/window_key.png"><figcaption style="color: #ffffff;">Key Transport Design</figcaption></figure></a>
 
   <figure><a href="https://2017.igem.org/Team:UNOTT/Design3"><img src="https://www.iconexperience.com/_img/g_collection_png/standard/256x256/window_key.png"><figcaption style="color: #ffffff;">Key Transport Design</figcaption></figure></a>
  
</div>
+
</div></div>
 
<body>
 
<body>
 
<p>.
 
<p>.

Revision as of 14:19, 14 September 2017

.

KEY PLASMID DESIGN

 

 

Random Brick formation (Components of plasmid)

___________________________

 

 

 

These bricks are formed from a random soup of characterised promoters "P", a reporter gene fluorescent protein, and a random terminator "T". This uses BSA I sites already digested previously into the DNA in order to ligate randomly in the correct order to create a random, yet purposeful and functional fluorescent signal.

Brick stitching

___________________________

 

These bricks are then stitched together via amplifying each randomly assembled brick through common amplification sites and then cutting them using a set of restriction enzymes which give each plasmid a specific order of bricks, depending on which are cut and then ligated together. As shown.

Plasmid Design

___________________________

 

These methods are used to create two plasmids, both of which to some extent are randomly assorted. An sgRNA plasmid which complements the dcas9, and a reporter plasmid which expresses the randomly inhibited and produced reporter FP's along with a dcas9.