Difference between revisions of "Team:Freiburg/Model"

Line 34: Line 34:
  
 
<p>
 
<p>
<math xmlns="http://www.w3.org/1998/Math/MathML">
+
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<msup><mi>f</mi><mi>'</mi></msup><mfencedseparators="|"><mi>t</mi></mfenced><mo>=</mo><mi>y</mi><mfencedseparators="|"><mi>z</mi></mfenced><mo>-</mo><mi>k</mi><mn>1</mn><mi>*</mi><mi>f</mi><mfencedseparators="|"><mi>t</mi></mfenced>
+
<msup><mi>f</mi>
 +
<mi>'</mi></msup><mfencedseparators="|"><mi>t</mi></mfenced><mo>=</mo><mi>y</mi><mfencedseparators="|"><mi>z</mi></mfenced><mo>-</mo><mi>k</mi><mn>1</mn><mi>*</mi><mi>f</mi><mfencedseparators="|"><mi>t</mi></mfenced>
 
</math>
 
</math>
 
</p>
 
</p>

Revision as of 14:07, 24 October 2017


Modeling

Modeling in synthetic biology and iGEM Freiburg 2017

In synthetic biology, modeling can be applied to a wide range of topics, for example modeling of genetic circuits to predict their outcome and to support, if enough data is available, further development such as optimizing genetic circuits for a desired outcome.

In this subfield of mathematical and computational biology, ordinary differential equations (ODEs) are used to describe the transcriptional and translational process (Chen et al., 1999). ODEs consist of a set of parameters and a system of functions and their derivatives. How they can be set up in their simplest form is shown below.

f'(t)=y(z)-k1*f(t) (1) z'(x)=k2*f(t)-k3*z(t) (2)

The variables are functions of time t where f(t) describes the mRNA concentration, y(z)the transcription function and z(t)the protein concentration. Rate constants are enlisted in the following table. \[RNA_{pol} + g_{C4R} \rightarrow RNA_{pol} + g_{C4R} + mRNA_{C4R}\]

f 't=yz-k1*ft