Team:Freiburg/References

References

Ashour, M. B. A., Gee, S. J. & Hammock, B. D. Use of a 96-well microplate reader for measuring routine enzyme activities. Anal. Biochem. 166, 353–360 (1987).

Ausländer, D. et al.. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell 55, 397–408 (2014).

Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

Bittinger, M. A. et al Activation of cAMP Response Element-Mediated Gene Expression by Regulated Nuclear Transport of TORC Proteins. Current Biology, Vol. 14, 2156–2161 (2004).

Bondanza, A. et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Memory 107, 1828–1836 (2006).

Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

Chen, T. et al Modeling gene expression with differential equations. Pac Symp Biocomput. (1999).

Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

Damaghi, M., Wojtkowiak, J. W. & Gillies, R. J. pH sensing and regulation in cancer. Front. Physiol. 4 DEC, 1–10 (2013).

Dangl, J. L. & Lanier, L. L. Founding father of FACS: Professor Leonard A. Herzenberg (1931-2013). Proc. Natl. Acad. Sci. 110, 20848–20849 (2013).

Dawson, R. M. C. et al. Data for Biochemical Research. Oxford Science Publ., 3rd edition, (1986).

Dey, D., Evans, G.R.D. Suicide Gene Therapy by Herpes Simplex Virus-1 Thymidine Kinase (HSV-TK). InTech, DOI: 10.5772/18544 (2011).

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

Epstein, A. C. R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–81 (2016).

Fillat, C., Carrió, M., Cascante, A. & Sangro, B. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene There 3, 13–26 (2003).

Finley, S. D. & Popel, A. S. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: Systems biology predictions. J. Natl. Cancer Inst. 105, 802–811 (2013).

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

Fischer, U. et al. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24, 1231–1243 (2005).

Gibson, H. M. et al. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J. Immunol. 179, 3831–3840 (2007).

Gilham, D. E., Debets, R., Pule, M., Hawkins, R. E. & Abken, H. CAR-T cells and solid tumors: Tuning T cells to challenge an inveterate foe. Trends Mol. Med. 18, 377–384 (2012).

Hager, S., Frame, F. M., Collins, A. T., Burns, J. E. & Maitland, N. J. An Internal Polyadenylation Signal Substantially Increases Expression Levels of Lentivirus-Delivered Transgenes but Has the Potential to Reduce Viral Titer in a Promoter-Dependent Manner. Hum. Gene Ther. 19, 840–850 (2008).

Hanahan, D. & Coussens, L. M. Accessories to the Crime : Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 21, 309–322 (2012).

Hartmann, J., Schüßler‐Lenz, M., Bondanza, A. & Buchholz, C. J. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. e201607485 (2017). doi:10.15252/emmm.201607485.

Houot, R., Schultz, L. M., Marabelle, A. & Kohrt, H. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol. Res. 3, 1115–1122 (2015).

Ingalls, B. Mathematical Modeling in Systems Biology: An Introduction. 1–396 (2012).

Jackson, R. E. & Burrone, J. Visualizing Presynaptic Calcium Dynamics and Vesicle Fusion with a Single Genetically Encoded Reporter at Individual Synapses. 8, 1–12 (2016).

Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–83 (2016).

Kato, Y. et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13, 89 (2013).

Liu, W. et al. Expression and characterization of a soluble VEGF receptor 2 protein. Cell Biosci. 4, 14 (2014).

Lomnitz, J. G. & Savageau, M. A. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems. Sci. Rep. 6, 32375 (2016).

Magee, M. S., Snook, A. Challenges to Chimeric Antigen Receptor (CAR)-T Cell Therapy for Cancer. Discov Med 18(100):265-271, (2014).

Mahindhoratep, S. et al. NF-kB related transgene expression in mouse tibial cranial muscle after pDNA injection followed or not by electrotransfer. Biochim. Biophys. Acta - Gen. Subj. 1840, 3257–3263 (2014).

Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).

Masters, J. R. & Stacey, G. N. Changing medium and passaging cell lines. Nat. Protoc. 2, 2276–2284 (2007).

McKeown, S. R. Defining normoxia, physoxia and hypoxia in tumours - Implications for treatment response. Br. J. Radiol. 87, 1–12 (2014).

Mech, L. D. A. Gray Wolf (Canis lupus) Delivers Live Prey to a Pup. Can. Field-Naturalist 128, 189–190 (2014).

Michel, M. et al. TT‐seq captures enhancer landscapes immediately after T‐cell stimulation. Mol. Syst. Biol. 13, 920 (2017).

Miettinen, M., Rikala, M.-S., Rysz, J., Lasota, J. & Wang, Z.-F. Study of 262 Vascular Endothelial and 1640. Am. J. Surg. Pathol. 36, 629–639 (2012).

Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. U. S. A. 100, 2604–2609 (2003).

Minami, T. et al. The Calcineurin-NFAT-Angiopoietin 2 signaling axis in lung endothelium is critical for the establishment of lung metastases. NIH Public Access. 4, 709–723 (2013).

Mittal, K., Ebos, J. & Rini, B. Angiogenesis and the tumor microenvironment: Vascular endothelial growth factor and beyond. Semin. Oncol. 41, 235–251 (2014).

Morgan, R. A. et al. Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ErbB2. Mol. Ther. 18, 843–851 (2010).

Moroz, E. et al. Real-time imaging of HIF-1a stabilization and degredation. PLoS One 4, (2009).

Narendranath, N. V, Thomas, K. C. & Ingledew, W. M. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26, 171–177 (2001).

Neelapu, S. S. et al. Axicabtagene Ciloleucel ( Axi ‐ Cel ; Kte ‐ C19 ) in Patients With Refractory Aggressive Non ‐ Hodgkin Lymphomas ( Nhl ): Primary Results of the Pivotal Trial Zuma ‐ 1 Immunotherapy From Malignant. Hematol. Oncol. 35, 28–28 (2017).

Nguyen, L. K. et al. A dynamic model of the hypoxia-inducible factor 1a (HIF-1a) network. J. Cell Sci. 128, 422–422 (2012).

Parkinson, M. J. & Lilley, D. M. The junction-resolving enzyme T7 endonuclease I: quaternary structure and interaction with DNA. J. Mol. Biol. 270, 169–78 (1997).

Patel, A., Sant, S. Hypoxic Tumor Microenvironment: Opportunities to Develop Targeted Therapies. 25, 368–379 (2015).

Pescador, N. et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem. J. 390, 189–197 (2005).

Punj, V. et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23, 2367–78 (2004).

Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

Riedel E., Janiak C. Anorganische Chemie, 6. Auflage, p321 (de Gruyter, 2004).

Sadelain, M., Brentjens, R. & Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013).

Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

Schödel, J., Oikonomopoulos, S. & Mole, D. R. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq Methods Cell culture. 117, 207–218 (2011).

Singer, B. D., King, L. S. & D’Alessio, F. R. Regulatory T cells as immunotherapy. Front. Immunol. 5, 1–10 (2014).

Singh, H. et al A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. NIH Public Access. 257(1): 181–190. doi:10.1111/imr.12137 (2015).

Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10, 1–11 (2015).

Tian, L., Bae, Y. H. Cancer Nanomedicines Targeting Tumor Extracellular pH. NIH Public Access. 42, 115–125 (2009).

Thomas, P. & Smart, T. G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 51, 187–200 (2005).

Tomicic, M. T., Thust, R. & Kaina, B. Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 21, 2141–2153 (2002).

Verzeletti, S. et al. Herpes Simplex Virus Thymidine Kinase Gene Transfer for Controlled Graft-versus-Host Disease and Graft-versus- Leukemia : Clinical Follow-up and Improved New Vectors 2251, 2243–2251 (1998).

Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8 + T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

Wang, L. et al. SynBioLGDB: a resource for experimentally validated logic gates in synthetic biology. Sci. Rep. 5, 8090 (2015).

Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. NIH Public Access 70, 646–656 (2008).

Wu, D. & Yotnda, P. Induction and Testing of Hypoxia in Cell Culture. J. Vis. Exp. 4–7 (2011). doi:10.3791/2899.

Yang, Y., Jacoby, E. & Fry, T. J. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr. Opin. Hematol. 22, 509–15 (2015).

Zhang, C., Liu, J., Zhong, J. F. & Zhang, X. Engineering CAR-T cells. Biomark. Res. 5, 22 (2017).

Ziello, J. E., Jovin, I. S. & Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 80, 51–60 (2007).