Difference between revisions of "Team:Edinburgh UG/Description"

Line 74: Line 74:
 
                     <button class="btn btn-primary" style="background-color: white; border-color: black; border-width:2pt;" type="button" data-toggle="collapse" data-target="#multiCollapseExample4" aria-expanded="false"
 
                     <button class="btn btn-primary" style="background-color: white; border-color: black; border-width:2pt;" type="button" data-toggle="collapse" data-target="#multiCollapseExample4" aria-expanded="false"
 
                         aria-controls="multiCollapseExample4"><img style="width: 50px; height: auto" src="https://static.igem.org/mediawiki/2017/3/32/T--Edinburgh_UG--description_medicalIcon.svg"></button>
 
                         aria-controls="multiCollapseExample4"><img style="width: 50px; height: auto" src="https://static.igem.org/mediawiki/2017/3/32/T--Edinburgh_UG--description_medicalIcon.svg"></button>
                  
+
                 </p>
 
                 <div class="row" style="max-width: 900px;">
 
                 <div class="row" style="max-width: 900px;">
 
                     <div class="col">
 
                     <div class="col">
Line 105: Line 105:
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                </p>
 
 
             </div>
 
             </div>
 
         </div>
 
         </div>

Revision as of 21:56, 26 October 2017




Project Description

What is site-specific recombination and why does it matter?


Site-specific recombination (SSR), found mostly in bacteria, viruses and transposons (the so-called parasitic DNA), is one of the many mechanisms which life utilises to perform genetic recombination (Leach, 1996). SSR generally consists of a recombinase protein that mediates recombination, and two DNA elements, called target sites, that are similar or identical to each other that the recombinase recognises (Grindley et al., 2006). Depending on the orientation and the location of the target sites, SSR can perform DNA integration, excision, and exchange. While bacteria use SSR to regulate gene expression and separate two chromosomes during cell division, viruses and transposons use it to mediate chromosomal integration into the bacterial chromosome, hijacking the cellular machinery to replicate themselves.



With the ability to modify DNA in a precise manner, SSR has been used in various fields of research and industrial applications where genetic engineering is required. Click to see the applications of SSR:


TEXT1
TEXT2
TEXT3
TEXT4