Difference between revisions of "Team:Tec-Chihuahua/ModifiedCell"

Line 22: Line 22:
 
                 <div class="col-md-6" >
 
                 <div class="col-md-6" >
 
                     <p class="standout" align= "justify">In this modified bacteria, the aiiA gene (green rectangle) codifies to our antidote protein (green oval) in an unregulated manner. After some time, the protein production will reach a constant production big enough to act on the quorum sensing regulation. With a constitutive aiiA expression, we expect a complete and uninterrupted inhibition of the AHLs activity by hydrolyzing them and varying the lengths of their acyl chains, modifying their conformational structure. Therefore its autoregulation will be unable to be completed, resulting in no more AHL production.
 
                     <p class="standout" align= "justify">In this modified bacteria, the aiiA gene (green rectangle) codifies to our antidote protein (green oval) in an unregulated manner. After some time, the protein production will reach a constant production big enough to act on the quorum sensing regulation. With a constitutive aiiA expression, we expect a complete and uninterrupted inhibition of the AHLs activity by hydrolyzing them and varying the lengths of their acyl chains, modifying their conformational structure. Therefore its autoregulation will be unable to be completed, resulting in no more AHL production.
  <p class="standout" align= "justify">To model the introduction of this gene into Erwinia amylovora, we first came to several assumptions discussed below.</p><br>
+
  <p class="standout" align= "justify">To model the behavior of this gene inside <i>Erwinia amylovora</i>, we first came to several assumptions discussed below.</p><br>
 
                 </div>
 
                 </div>
  

Revision as of 21:18, 31 October 2017

Erwinions

MODIFIED CELL

aiiA: UNREGULATED GENE RESPONSIBLE FOR QUORUM SENSING INHIBITION

After studying the wild cell behavior, one of our solutions to turn off its virulence was to genetically modify Erwinia amylovora. We introduced a gene that codifies to an AHL degrading enzyme, AHL-lactonase (aiiA). In bacterial pathogens, this enzyme disrupts bacterial quorum sensing, consequently inhibiting the production of pathogenesis factors.

In this modified bacteria, the aiiA gene (green rectangle) codifies to our antidote protein (green oval) in an unregulated manner. After some time, the protein production will reach a constant production big enough to act on the quorum sensing regulation. With a constitutive aiiA expression, we expect a complete and uninterrupted inhibition of the AHLs activity by hydrolyzing them and varying the lengths of their acyl chains, modifying their conformational structure. Therefore its autoregulation will be unable to be completed, resulting in no more AHL production.

To model the behavior of this gene inside Erwinia amylovora, we first came to several assumptions discussed below.





References


Ingalls, B. (2013) Modeling of Chemical Reaction Networks & Gene Regulatory Networks. From Mathematical Modeling in Systems Biology(pp. 21-314 ). England: MIT press.

Frederick K. Balagaddé et al. (2008) A synthetic Escherichia coli predator–prey ecosystem, EMBO, 187, pp. 1-26.

James, S. et al. (2000) Luminescence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux Regulation., JMB, 296, pp. 1127-1137.

Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237-1244