Difference between revisions of "Team:NPU-China/Design"

 
(54 intermediate revisions by 5 users not shown)
Line 25: Line 25:
 
     <![endif]-->
 
     <![endif]-->
 
     <style>
 
     <style>
 
 
     </style>
 
     </style>
 
</head>
 
</head>
Line 36: Line 35:
 
         <div class="container">
 
         <div class="container">
 
             <div class="navbar-header">
 
             <div class="navbar-header">
                 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button>
+
                 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
                    <span class="sr-only">Toggle navigation</span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                </button>
 
                 <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
 
                 <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
                  <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
+
                    <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
 
                 </a>
 
                 </a>
 
             </div>
 
             </div>
 
             <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 
             <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 
                 <ul class="nav navbar-nav navbar-right">
 
                 <ul class="nav navbar-nav navbar-right">
                     <li class="active"> <a href="https://2017.igem.org/Team:NPU-China">Home</a> </li>
+
                     <li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team<b class="caret"></b></a>
+
                        <a href="https://2017.igem.org/Team:NPU-China">Home</a>
 +
                    </li>
 +
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project<b class="caret"></b></a>
+
                     <li class="dropdown active">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a> </li>
+
                            </li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a> </li>
+
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts<b class="caret"></b></a>
+
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a> </li>
+
                     <li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP<b class="caret"></b></a>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 +
                    </li>
 +
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a> </li>
+
                     <li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a> </li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a> </li>
+
                    </li>
 +
                     <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
 +
                    </li>
 +
                     <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
 +
                    </li>
  
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook<b class="caret"></b></a>
+
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
Line 88: Line 145:
 
     </nav>
 
     </nav>
  
     <!-- Header Carousel -->
+
     <!-- Page Content -->
     <header id="myCarousel" class="carousel slide">
+
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
         <!-- Indicators -->
+
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/4/46/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fdesign.jpg">
         <div class="carousel-indicators">
+
         <div class="container" style="padding-top:70px">
             <li data-target="#myCarousel" data-slide-to="0" class="active"></li>
+
             <div class="row">
            <li data-target="#myCarousel" data-slide-to="1"></li>
+
                <div class="col-md-12">
            <li data-target="#myCarousel" data-slide-to="2"></li>
+
                    <h2 style="text-align:center">Introduction</h2>
        </div>
+
                    <h4>The essence of biochemical synthesis is the catalytic reaction with enzyme as the catalyst. Creating
 +
                        new biochemical reactions is an important research direction of synthetic biology.
 +
                        <br><br> ceaS2, whose full name is N2-(2-carboxyethyl)arginine synthase2, is a kind of enzyme in Streptomyces
 +
                        clavuligerus. The mentor of our team, Jiang Huifeng, has confirmed the new functions of ceaS2 with the help of TPP (Thiamine pyrophosphate) and magnesium ions. ceaS2 enzyme can catalyze the production of acrylic acid with DHAP (dihydroxy acetone phosphate) or G3P (glyceraldehyde 3-phosphate) as substrate.
 +
                        <br><br> Cell factory of acrylic acid (GAACF) 1.0:
 +
                        <br><br> DHAP and G3P are the central metabolic secondary products which can be easily found in various organisms.
 +
                        They are the carbon flow nodes that must be passed in the glycerol metabolic pathway in most organisms.
 +
                      ceaS2 enzyme being the core part, it is possible to create a new pathway to synthesize acrylic acid based on glycerol metabolic pathway in organisms and construct a cell factory with a high yield of acrylic acid.
  
        <!-- Wrapper for slides -->
+
                        <br><br> First, we took E. coli BL21 (DE3) as the chassis cells and constructed engineering bacteria carrying
        <div class="carousel-inner">
+
                        the gene of ceaS2 enzyme with pET-28a plasmid as the vector. We constructed a new pathway to synthesize
            <div class="item active">
+
                        acrylic acid from any carbon source by transforming ceaS2 directly into the chassis cells. This new
                <img src="https://static.igem.org/mediawiki/2017/1/1f/Npu-banner1.jpg">
+
                        approach is the shortest compared to other pathways. Take the glycerol metabolic pathway of E. coli
 +
                        as an example, we only need three enzymes to achieve the synthesis of acrylic acid from glycerol.
 +
                        So this pathway has stronger malleability and broader development prospects.
 +
                       
  
            </div>
 
            <div class="item">
 
                <img src="https://static.igem.org/mediawiki/2017/0/06/Npu-banner3.jpg">
 
            </div>
 
            <div class="item">
 
                <img src="https://static.igem.org/mediawiki/2017/2/28/Npu-banner2.jpg">
 
            </div>
 
        </div>
 
        <a class="left carousel-control" href="#myCarousel" data-slide="prev">
 
            <span class="icon-prev"></span>
 
        </a>
 
        <a class="right carousel-control" href="#myCarousel" data-slide="next">
 
            <span class="icon-next"></span>
 
        </a>
 
        <!-- Controls -->
 
    </header>
 
  
    <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
+
              <div class="col-md-12" style="padding-top:30px">
        <!-- Page Content -->
+
                    <div class="col-md-3">
        <div class="container">
+
                        <img src="https://static.igem.org/mediawiki/2017/7/7b/NPU-newE.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/2/21/%E5%A4%A7%E8%82%A0%E5%8E%9F%E5%A7%8B%E4%BB%A3%E8%B0%A2.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 +
<div class="col-md-3">
 +
                        <img src="https://static.igem.org/mediawiki/2017/4/44/%28%E5%B0%8F%29%E5%A4%A7%E8%82%A03_pETDuet-NOX-CAT_7451.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 +
                </div>
  
            <div class="row" style=" padding-top:70px">
+
         
                <div class="col-md-12">
+
 
                    <h2 class="page-header" align="center" >Abstract</h2>
+
 
                    <h4>Acrylic acid is a bulk chemical raw material, which is widely used in many fields because of its excellent
+
 
                         polymerization capacity, such as paint, glue, and even mobile phone screen protective film. The average
+
               
                         annual market demand of acrylic acid is up to 8 million tons, and the market value is nearly 10 billion
+
                       
                         US dollars. It has broad market prospect. At present, acrylic acid is made from propylene (which
+
                       
                         is obtained by petroleum cracking) after multi-step treatment. The production process causes pollution,
+
                        <br>Through the whole cell catalysis and HPLC (High Performance Liquid Chromatography),
                        high energy consumption and it is unsustainable.<br> This year, we aim to use a green and environmentally
+
                        the results show that the engineering bacteria can use glycerol as carbon source to produce acrylic
                         friendly carbon source, glycerol to achieve all green production of acrylic acid. Compared to traditional
+
                        acid. However, the yield of the cell factory 1.0 is not high, only about 1mg / L.
                         chemical synthesis methods, Synbio is green and sustainable, and glycerol is cheaper than ethylene.
+
 
 +
 
 +
                        <br>
 +
 
 +
 
 +
 
 +
                        <br> It is known that acrylic acid can not be metabolized in the cell, so we analyzed the possible reasons
 +
                         as the following:
 +
                        <br> 1. The activity and the catalytic efficiency of wild type ceaS2 is low.
 +
                         <br> 2. The low carbon flow rate of glycerol metabolic pathway in E. coli leads to the low concentration
 +
                         of DHAP and G3P.
 +
                        <br> 3. Acrylic acid is toxic to the chassis cells.
 +
                         <br> 4. The reaction conditions such as carbon source, pH, temperature and reaction time are not suitable.
 +
                        <br> Based on the analyzing results, we have made improvements and built a new cell factory.
 +
                         <br>
 +
                        <br> Cell factory of acrylic acid (GAACF) 2.0:
 +
                         <br> We built a new cell factory of acrylic acid through the four part: CO-PART, SYSTEM, PATHWAY, PRODUCTION!
 +
                        <br>
 
                     </h4>
 
                     </h4>
                 
+
        <div class="container" style="padding-top:50px">
 +
                    <div id="COREPART" style="padding-top:50px;margin-top:-50px;">
 +
                        <h2 style="text-align:center">Core Part</h2>
 +
                        <h4>Acrylic acid is a byproduct of ceaS2 enzyme, the catalytic effect of wild type ceaS2 enzyme is very
 +
                            weak, and acrylic acid production is only 1mg / L. So it is necessary to improve the catalytic
 +
                            effect of this core factor, ceaS2 enzyme.
 +
                            <br><br> The gene of ceaS2 enzyme consists of 1719 deoxynucleotides and the protein sequence consists
 +
                            of 573 amino acids. We need to use bioinformatics to analyze and simulate, in order to help us
 +
                            decide the correct proposal.
 +
                            <br>
 +
<center><img src="https://static.igem.org/mediawiki/2017/a/ac/Ceas2.png" class="img-responsive"></center>
 +
<br> We constructed ceaS2 enzyme mutants using the AEMD (Auto Enzyme Mutation Design) platform. We
 +
                            constructed the ceaS2 wild-type sequence on pET-28a plasmid. We used pET-28a-ceaS2 plasmid as
 +
                            a template to create point mutation, and then transformed the plasmid into BL21. Then, we did
 +
                            the whole cell catalysis to get the products. Finally, we screened for ceaS2 mutants with high
 +
                            catalytic efficiency by HPLC (High Performance Liquid Chromatography) and
 +
                            HTS (High throughput screening) .
 +
                            <br>
 +
                        </h4>
 +
                    </div>
 +
        <center><img src="https://static.igem.org/mediawiki/2017/b/bf/5A_ceaS2.gif"></center>
 +
 
 +
 
 +
        <div class="container" style="padding-top:50px">
 +
 
 +
                    <div id="Pathway" style="padding-top:50px;margin-top:-50px;">
 +
                        <h2 style="text-align:center">Pathway</h2>
 +
                        <h4>The carbon flow rate of the glycerol metabolic pathway is low. In order to solve the problem, we
 +
                            need reconstruction and optimization of the original metabolic pathway.
 +
                            <br>
 +
                            <br> RE-Construction:We designed the GDC (GlyDH-DAK-ceaS2) pathway to produce acrylic acid from glycerol.
 +
                            In this pathway, GlyDH(Glycerol dehydrogenase) can efficiently convert Glycerol into DHA(1,3-Dihydroxyacetone).
 +
                            Then DAK (Dihydroxyacetone kinase) converts DHA into DHAP. Finally, ceaS2 converts DHAP into
 +
                            acrylic acid. In addition, because GlyDH depends on NAD+, we added two reduction models, NOX
 +
                            (NADH dehydrogenase )and CAT(Catalase), to the pathway, with the purpose of providing the required
 +
                            reduction force for GLY DH through the two layers of substrate level cycle. At last, we construct
 +
                            a new pathway for acrylic acid synthesis- GNCDC(GlyDH-NOX-CAT-DAK-ceaS2)
 +
 
 +
 
 +
<br>
 +
<center><img src="https://static.igem.org/mediawiki/2017/1/10/%E5%A4%A7%E8%82%A0%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive"></center>
 +
 
 +
 
 +
 
 +
                            <br><br> The genes of GlyDH and DAK were constructed on two MCS (multiple cloning sites) on the backbone
 +
                            of pCDFDuet-1 plasmid. NOX and CAT were constructed on two MCSs on the backbone of pETDuet-1
 +
                            plasmid.
 +
 
 +
<div class="col-md-12" style="padding-top:30px">
 +
                    <div class="col-md-4">
 +
                        <img src="https://static.igem.org/mediawiki/2017/5/5c/%E5%A4%A7%E8%82%A01_pCDFDuet-gld-DAK_6550.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 +
                    <div class="col-md-4">
 +
                        <img src="https://static.igem.org/mediawiki/2017/c/c9/%E5%A4%A7%E8%82%A02_pET-28a-ceas2_7015.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 +
                    <div class="col-md-4">
 +
                        <img src="https://static.igem.org/mediawiki/2017/7/70/%E5%A4%A7%E8%82%A03_pETDuet-NOX-CAT_7451.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 
                 </div>
 
                 </div>
            </div>
+
                         
       
+
                     </div>
            <!-- Marketing Icons Section -->
+
            <div class="row" style="padding-top:70px">
+
                <div class="col-md-12">
+
                     <h2 class="page-header" align="center">We construct cell factory based on 4 levels, which are—</h2>
+
                    <br>
+
                </div>
+
            </div>
+
  
 +
        <div class="container" style="padding-top:50px">
  
 +
                    <div id="Syetem" style="padding-top:50px;margin-top:-50px;">
 +
                        <h2 style="text-align:center">System</h2>
 +
                        <h4>The choice of the chassis organism is vital to the efficiency of the cell factory. Acrylic acid may
 +
                            do damage to the cell membrane. So we need to choose an organism which has high tolerance of
 +
                            acrylic acid. Escherichia coli and Saccharomyces cerevisiae are two model organisms which can
 +
                            be easily modified in the prokaryotic and eukaryotic.
 +
                            <br><br> Therefore, in the choice of the chassis organism, we tested two organisms, E. coli MG1655 and
 +
                            Saccharomyces cerevisiae BY4741. BY4741 has a great ability to metabolize glycerol. According
 +
                            to GAACF1.0, we used the YCPlac33 plasmid with LEU defect screening marker as the backbone and
 +
                            used the pTDH3 constitutive promoter and tPFK1 constitutive terminator to construct ceaS2 plasmid.<br>
  
  
            <div class="row">
+
 
                <div class="col-md-6 img-portfolio">
+
 
                     <a href="portfolio-item.html">
+
<div class="col-md-12" style="padding-top:30px">
                         <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/a/ac/Ceas2.png">
+
                     <div class="col-md-3">
                     </a>
+
                         <img src="https://static.igem.org/mediawiki/2017/5/50/NPU-newSC.png" class="img-responsive">
                     <h3 align="center">
+
                        <h4> </h4>
                         <a href="portfolio-item.html">Core Part</a>
+
                     </div>
                     </h3>
+
                     <div class="col-md-6">
                    <h4>We use ceaS2 enzyme as the core part, but acrylic acid is a byproduct of ceaS2 enzyme, the wild type
+
                         <img src="https://static.igem.org/mediawiki/2017/7/7b/%E9%85%B5%E6%AF%8D%E5%8E%9F%E5%A7%8B%E4%BB%A3%E8%B0%A2%E5%9B%BE.png" class="img-responsive">
                         's catalytic effect is very weak, whose production is only 1mg/L. So we hope to improve the catalytic
+
                        <h4> </h4>
                         effect of ceaS2 enzyme.<br> We designed ceaS2 enzyme mutants via the AEMD(Auto Enzyme Mutation Design)
+
                     </div>
                        platform and screened for better-worked ceaS2 mutants by HPLC(High Performance Liquid Chromatography)
+
<div class="col-md-3">
                        and HTS(High throughput screening).
+
                         <img src="https://static.igem.org/mediawiki/2017/4/47/%E9%85%B5%E6%AF%8D1_Y33-Leu-ceas2_9033.png" class="img-responsive">
                     </h4>
+
                         <h4> </h4>
 +
                     </div>
 
                 </div>
 
                 </div>
                <div class="col-md-6 img-portfolio">
+
 
                     <a href="portfolio-item.html">
+
                            <br>  We confirmed the proposal can make S.cerevisiae produce acrylic acid, but the
                         <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/8/85/System.png" alt="">
+
                            yield is low, so we decided to optimize it.
                     </a>
+
                            <br> First, according to GNCDC(GlyDH-NOX-CAT-DAK-ceaS2) in E.coli, we added NOX to the pathway(the
                     <h3 align="center">
+
                            CAT enzyme is active in S.cerevisiae). So we designed a pathway, GNDC(GlyDH-NOX -DAK-ceaS2),
                         <a href="portfolio-item.html">System</a>
+
                            for S.cerevisiae.
                     </h3>
+
 
                    <h4>Respectively, E. coli and S. cerevisiae are the two sorts of model organisms that are most convenient
+
<div class="col-md-12" style="padding-top:30px">
                         to operate in the prokaryote and eukaryote. Therefore, in terms of our choice of the chassis organisms,
+
                     <div class="col-md-3">
                        we have them both tested, which were E. coli MG1655 and S. cerevisiae BY4741 individually.
+
                         <img src="https://static.igem.org/mediawiki/2017/2/23/%E9%85%B5%E6%AF%8D3_Y33-URA-gld-DAK_10763.png" class="img-responsive">
                    </h4>
+
                        <h4> </h4>
 +
                     </div>
 +
                     <div class="col-md-6">
 +
                         <img src="https://static.igem.org/mediawiki/2017/b/b0/%E9%85%B5%E6%AF%8D%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                     </div>
 +
<div class="col-md-3">
 +
                         <img src="https://static.igem.org/mediawiki/2017/2/25/%E9%85%B5%E6%AF%8D2_Y33-leu-ceas2-NOX_10513.png" class="img-responsive">
 +
                        <h4> </h4>
 +
                    </div>
 
                 </div>
 
                 </div>
            </div>
 
            <!-- /.row -->
 
  
            <!-- Projects Row -->
+
                            <br><br>  The genes of GlyDH and DAK were constructed on the backbone of YCPlac33 plasmid with
            <div class="row" style="padding-top:50px">
+
                            URA marker. We used the ADH1 promoter and tGPD1 terminator for GlyDH, the PGK1 promoter and the
                <div class="col-md-6 img-portfolio">
+
                            tPFK1 terminator for DAK. NOX and ceaS2 were constructed on the backbone of the other YCPlac33
                     <a href="portfolio-item.html">
+
                            plasmid. We replaced URA marker with Leu marker to screen for two plasmids easily. We used the
                        <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/e/ec/Pathway.png" alt="">
+
                            TEF2 promoter and tRPS2 terminator for GlyDH, the same promoter and terminator as the original
                    </a>
+
                            pathway for ceaS2.
                    <h3 align="center">
+
                            <br>
                         <a href="portfolio-item.html">Pathway</a>
+
                        </h4>
                    </h3>
+
                    </div>
                    <h4>We need to design two different metabolic pathways for two different chassis organisms and propose different
+
 
                        optimization schemes for them.We introduced the ceaS2 enzyme exogenously on the basis of the glycerol
+
        <div class="container" style="padding-top:50px">
                        metabolism of the two bacteria, so that it could produce the target product acrylic acid using the
+
 
                        intermediates G3P and DHAP.Besides having finished the construction of the pathways, we also reconstructed
+
                     <div id="Production" style="padding-top:50px;margin-top:-50px;">
                        and optimized the original metabolic pathway to increase the carbon flux rate of the designed pathway
+
                         <h2 style="text-align:center">Production</h2>
                        and reduce the loss of bypass carbon flux.</h4>
+
                        <h4>To make the engineering bacteria produce acrylic acid, it takes two stages. First, bacteria must
                </div>
+
                            grow and express the enzyme, then use carbon source to synthesize acrylic acid. To screen for
                <div class="col-md-6 img-portfolio">
+
                            engineering bacteria, it is a waste of time and reagents to use the traditional fermentation
                    <a href="portfolio-item.html">
+
                            method. We used whole cell catalysis to carry out the reaction for acrylic acid production
                        <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/6/67/Production2.png" alt="">
+
                            <br><br> After the enzyme is expressed, the bacteria solution will be centrifuged and concentrated 10
                    </a>
+
                            times with buffer before the reaction. Therefore, we optimized the reaction process, selected
                    <h3 align="center">
+
                            the carbon source, Buffer, temperature, pH, reaction time and other conditions to optimize the
                         <a href="portfolio-item.html" >Production</a>
+
                            production process of the cell factory.
                    </h3>
+
                            <br>
                    <h4>All of the previous processes are to build the engineering strains which have a high production of acrylic
+
                        </h4>
                        acid that we need. In the subsequent fermentation, we also need to determine the best parameters
+
                        <center><img src="https://static.igem.org/mediawiki/2017/2/2a/%E7%AD%9B%E9%80%89%E7%BB%84%E5%90%88%E8%A1%A8.png" class="img-responsive"></center>
                        of the engineering strain.<br> Therefore, we selected the carbon source, Buffer, temperature, pH
+
                        <br>
                        and other conditions to optimize the cell production process.</h4>
+
                         <h3>PS. We also made Hardware
 +
                            <a href="https://2017.igem.org/Team:NPU-China/Hardware">(Click Here)</a> to simulate the industrial production process of acrylic acid!</h3>
 +
                    </div>
 +
 
 
                 </div>
 
                 </div>
 +
 
             </div>
 
             </div>
 +
            <!-- Blog Post Row -->
 +
 +
 
         </div>
 
         </div>
        <!-- /.container -->
 
 
         <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 
         <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 
 
     </div>
 
     </div>
     <!-- /.batu -->
+
     </div>
 
+
 
+
 
+
  
    <!-- Script to Activate the Carousel -->
 
    <script>
 
        $('.carousel').carousel({
 
            interval: 5000 //changes the speed
 
        })
 
    </script>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 19:35, 1 November 2017

Introduction

The essence of biochemical synthesis is the catalytic reaction with enzyme as the catalyst. Creating new biochemical reactions is an important research direction of synthetic biology.

ceaS2, whose full name is N2-(2-carboxyethyl)arginine synthase2, is a kind of enzyme in Streptomyces clavuligerus. The mentor of our team, Jiang Huifeng, has confirmed the new functions of ceaS2 with the help of TPP (Thiamine pyrophosphate) and magnesium ions. ceaS2 enzyme can catalyze the production of acrylic acid with DHAP (dihydroxy acetone phosphate) or G3P (glyceraldehyde 3-phosphate) as substrate.

Cell factory of acrylic acid (GAACF) 1.0:

DHAP and G3P are the central metabolic secondary products which can be easily found in various organisms. They are the carbon flow nodes that must be passed in the glycerol metabolic pathway in most organisms. ceaS2 enzyme being the core part, it is possible to create a new pathway to synthesize acrylic acid based on glycerol metabolic pathway in organisms and construct a cell factory with a high yield of acrylic acid.

First, we took E. coli BL21 (DE3) as the chassis cells and constructed engineering bacteria carrying the gene of ceaS2 enzyme with pET-28a plasmid as the vector. We constructed a new pathway to synthesize acrylic acid from any carbon source by transforming ceaS2 directly into the chassis cells. This new approach is the shortest compared to other pathways. Take the glycerol metabolic pathway of E. coli as an example, we only need three enzymes to achieve the synthesis of acrylic acid from glycerol. So this pathway has stronger malleability and broader development prospects.


Through the whole cell catalysis and HPLC (High Performance Liquid Chromatography), the results show that the engineering bacteria can use glycerol as carbon source to produce acrylic acid. However, the yield of the cell factory 1.0 is not high, only about 1mg / L.

It is known that acrylic acid can not be metabolized in the cell, so we analyzed the possible reasons as the following:
1. The activity and the catalytic efficiency of wild type ceaS2 is low.
2. The low carbon flow rate of glycerol metabolic pathway in E. coli leads to the low concentration of DHAP and G3P.
3. Acrylic acid is toxic to the chassis cells.
4. The reaction conditions such as carbon source, pH, temperature and reaction time are not suitable.
Based on the analyzing results, we have made improvements and built a new cell factory.

Cell factory of acrylic acid (GAACF) 2.0:
We built a new cell factory of acrylic acid through the four part: CO-PART, SYSTEM, PATHWAY, PRODUCTION!

Core Part

Acrylic acid is a byproduct of ceaS2 enzyme, the catalytic effect of wild type ceaS2 enzyme is very weak, and acrylic acid production is only 1mg / L. So it is necessary to improve the catalytic effect of this core factor, ceaS2 enzyme.

The gene of ceaS2 enzyme consists of 1719 deoxynucleotides and the protein sequence consists of 573 amino acids. We need to use bioinformatics to analyze and simulate, in order to help us decide the correct proposal.

We constructed ceaS2 enzyme mutants using the AEMD (Auto Enzyme Mutation Design) platform. We constructed the ceaS2 wild-type sequence on pET-28a plasmid. We used pET-28a-ceaS2 plasmid as a template to create point mutation, and then transformed the plasmid into BL21. Then, we did the whole cell catalysis to get the products. Finally, we screened for ceaS2 mutants with high catalytic efficiency by HPLC (High Performance Liquid Chromatography) and HTS (High throughput screening) .

Pathway

The carbon flow rate of the glycerol metabolic pathway is low. In order to solve the problem, we need reconstruction and optimization of the original metabolic pathway.

RE-Construction:We designed the GDC (GlyDH-DAK-ceaS2) pathway to produce acrylic acid from glycerol. In this pathway, GlyDH(Glycerol dehydrogenase) can efficiently convert Glycerol into DHA(1,3-Dihydroxyacetone). Then DAK (Dihydroxyacetone kinase) converts DHA into DHAP. Finally, ceaS2 converts DHAP into acrylic acid. In addition, because GlyDH depends on NAD+, we added two reduction models, NOX (NADH dehydrogenase )and CAT(Catalase), to the pathway, with the purpose of providing the required reduction force for GLY DH through the two layers of substrate level cycle. At last, we construct a new pathway for acrylic acid synthesis- GNCDC(GlyDH-NOX-CAT-DAK-ceaS2)


The genes of GlyDH and DAK were constructed on two MCS (multiple cloning sites) on the backbone of pCDFDuet-1 plasmid. NOX and CAT were constructed on two MCSs on the backbone of pETDuet-1 plasmid.

System

The choice of the chassis organism is vital to the efficiency of the cell factory. Acrylic acid may do damage to the cell membrane. So we need to choose an organism which has high tolerance of acrylic acid. Escherichia coli and Saccharomyces cerevisiae are two model organisms which can be easily modified in the prokaryotic and eukaryotic.

Therefore, in the choice of the chassis organism, we tested two organisms, E. coli MG1655 and Saccharomyces cerevisiae BY4741. BY4741 has a great ability to metabolize glycerol. According to GAACF1.0, we used the YCPlac33 plasmid with LEU defect screening marker as the backbone and used the pTDH3 constitutive promoter and tPFK1 constitutive terminator to construct ceaS2 plasmid.


We confirmed the proposal can make S.cerevisiae produce acrylic acid, but the yield is low, so we decided to optimize it.
First, according to GNCDC(GlyDH-NOX-CAT-DAK-ceaS2) in E.coli, we added NOX to the pathway(the CAT enzyme is active in S.cerevisiae). So we designed a pathway, GNDC(GlyDH-NOX -DAK-ceaS2), for S.cerevisiae.



The genes of GlyDH and DAK were constructed on the backbone of YCPlac33 plasmid with URA marker. We used the ADH1 promoter and tGPD1 terminator for GlyDH, the PGK1 promoter and the tPFK1 terminator for DAK. NOX and ceaS2 were constructed on the backbone of the other YCPlac33 plasmid. We replaced URA marker with Leu marker to screen for two plasmids easily. We used the TEF2 promoter and tRPS2 terminator for GlyDH, the same promoter and terminator as the original pathway for ceaS2.

Production

To make the engineering bacteria produce acrylic acid, it takes two stages. First, bacteria must grow and express the enzyme, then use carbon source to synthesize acrylic acid. To screen for engineering bacteria, it is a waste of time and reagents to use the traditional fermentation method. We used whole cell catalysis to carry out the reaction for acrylic acid production

After the enzyme is expressed, the bacteria solution will be centrifuged and concentrated 10 times with buffer before the reaction. Therefore, we optimized the reaction process, selected the carbon source, Buffer, temperature, pH, reaction time and other conditions to optimize the production process of the cell factory.


PS. We also made Hardware (Click Here) to simulate the industrial production process of acrylic acid!