Difference between revisions of "Team:NPU-China/Demonstrate"

 
(59 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{NPU-China/mmp}}
 
{{NPU-China/mmp}}
 
<html lang="en">
 
<html lang="en">
 
 
<head>
 
<head>
    <!-- Bootstrap Core CSS -->
+
  <!-- Bootstrap Core CSS -->
    <link href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet">
+
  <link href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet">
  
    <!-- Custom CSS -->
+
  <!-- Custom CSS -->
    <link href="https://2017.igem.org/Template:NPU-China/css?action=raw&ctype=text/css" rel="stylesheet">
+
  <link href="https://2017.igem.org/Template:NPU-China/css?action=raw&ctype=text/css" rel="stylesheet">
  
    <!-- Custom Fonts -->
+
  <!-- Custom Fonts -->
    <link href="https://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
+
  <link href="https://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
  
    <!-- jQuery -->
+
  <!-- jQuery -->
    <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
+
  <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
  
    <!-- Bootstrap Core JavaScript -->
+
  <!-- Bootstrap Core JavaScript -->
    <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
+
  <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
  
    <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
+
  <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
    <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
+
  <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
    <!--[if lt IE 9]>
+
  <!--[if lt IE 9]>
 
         <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
 
     <![endif]-->
 
     <![endif]-->
    <style>
+
  <style>
    </style>
+
  </style>
 
</head>
 
</head>
 +
<body data-spy="scroll" data-target="#myScrollspy">
 +
  <!-- Navigation -->
 +
  <nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 +
    <div class="container">
 +
      <div class="navbar-header">
 +
        <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
          <span class="sr-only">Toggle navigation</span>
 +
          <span class="icon-bar"></span>
 +
          <span class="icon-bar"></span>
 +
          <span class="icon-bar"></span>
 +
        </button>
 +
        <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
 +
          <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
 +
        </a>
 +
      </div>
 +
      <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 +
        <ul class="nav navbar-nav navbar-right">
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China">Home</a>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li class="dropdown active">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
 +
          </li>
  
 
+
          <li class="dropdown">
<body>
+
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
 
+
              <b class="caret"></b>
    <!-- Navigation -->
+
            </a>
    <nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
+
            <ul class="dropdown-menu">
        <div class="container">
+
              <li>
            <div class="navbar-header">
+
                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
              </li>
                    <span class="sr-only">Toggle navigation</span>
+
              <li>
                    <span class="icon-bar"></span>
+
                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
                    <span class="icon-bar"></span>
+
              </li>
                    <span class="icon-bar"></span>
+
            </ul>
                </button>
+
          </li>
                <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
+
        </ul>
                    <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
+
      </div>
                </a>
+
    </div>
            </div>
+
  </nav>
            <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
+
  <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
                <ul class="nav navbar-nav navbar-right">
+
    <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/3c/%E9%A2%98%E7%9B%AE%E9%80%9A%E6%A0%8Fdemonstrate.jpg">  
                    <li>
+
    <!-- Page Content -->
                        <a href="https://2017.igem.org/Team:NPU-China">Home</a>
+
    <div class="container">
                    </li>
+
      <div class="row">
                    <li class="dropdown">
+
        <!-- Sidebar Column -->
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
+
        <div class="col-md-3" id="myScrollspy" style="font-size:12px;line-height:10px;padding-top: 100px; margin-top: -50px;">
                            <b class="caret"></b>
+
          <ul class="nav nav-pills nav-stacked" data-spy="affix" style="width:250px; position:fixed;">
                        </a>
+
            <li class="active">
                        <ul class="dropdown-menu">
+
              <a href="#section-1">Core-part</a>
                            <li>
+
            </li>
                                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
+
            <li>
                            </li>
+
              <a href="#section-2">System</a>
                            <li>
+
            </li>
                                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
+
            <li>
                            </li>
+
              <a href="#section-3">Pathway</a>
                        </ul>
+
            </li>
                    </li>
+
            <li>
                    <li class="dropdown active">
+
              <a href="#section-4">Product</a>
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
+
            </li>
                            <b class="caret"></b>
+
            <li>
                        </a>
+
              <a href="#section-5">Conclusion</a>
                        <ul class="dropdown-menu">
+
            </li>
                            <li>
+
          </ul>
                                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
+
                    </li>
+
                    <li class="dropdown">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
+
                    </li>
+
 
+
                    <li class="dropdown">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                </ul>
+
            </div>
+
 
         </div>
 
         </div>
    </nav>
+
        <!-- Content Column -->
 +
        <div class="col-md-9">
 +
          <h2 id="section-1" style="padding-top: 100px; margin-top: -50px;">1.  Core-part:the activity of rate limiting enzyme ceaS2 has been improved</h2>
 +
          <h4>
 +
          Acrylic acid is a byproduct of CEAS2 enzyme, the catalytic effect of wild type
 +
            ceaS2 enzyme is very weak.
 +
<br/>
 +
We used the AEMD platform to analyze the ceaS2
 +
            enzyme and screened the 38 mutants in the range of 5 Å around the active site
 +
            to carry out molecular cloning of point mutation, and then tested the acrylic
 +
            acid yield by HPLC after whole cell catalysis. Because there are a large number
 +
            of mutants, we divided them into five batches to carry out the reaction, the
 +
            results are as follows:
 +
            <br />
 +
          <img src="https://static.igem.org/mediawiki/2017/8/8b/NPU-image01.png" style="max-width:60%;"><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/d/dc/NPU-image02.png" style="max-width:60%;"><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/e/e6/NPU-image03.png" style="max-width:60%;"><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/a/a4/NPU-image04.png" style="max-width:60%;"><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/b/b2/NPU-image05.png" style="max-width:60%;"><br /><br>
 +
          In the figure, the horizontal axis stands for each different point mutation. We selected
 +
          two reaction times 21h and 42h, the vertical axis is acrylic acid production (mg / L).<br>
 +
          Due to the differences in wild type between different batches, we will normalize all
 +
          the data in order to facilitate the analysis of the catalytic effect of each mutation point
 +
          compared to the respective WT, that is, to compare each mutation point to The batch WT
 +
          yield multiple is a new indicator, the result is as follows:
 +
          <br />
 +
          <br />
 +
          <img src="https://static.igem.org/mediawiki/2017/e/e4/NPU-26.png" style="max-width:110%;"><br />
 +
          The horizontal axis in the figure is the position of each mutational site, and the
 +
          vertical axis is the multiple of the acrylic acid yield of each mutational site compared
 +
          to each corresponding batch of the wild type. It can be seen that there were 11
 +
          mutational sites, whose yields were higher than the wild type ceaS2, in the 38 mutant
 +
          programs, and the F438M mutant had the highest yield of 11 times the wild type. The
 +
          effect was significant.
 +
          <br />
 +
          </h4>
 +
          <h2 id="section-2" style="padding-top: 100px; margin-top: -50px;">2.System:S. cerevisiae is more suitable for chassis cells than E. coli</h2>
 +
          <h4>
 +
          Acrylic acid has strong chemical reactivity and is very destructive to cell
 +
          membrane. Therefore, the chassis cells’ tolerance to acrylic acid is a "roof" factor
 +
          that restricts high yield of acrylic acid.<br>
 +
          We chose E. coli and S. cerevisiae, the two most convenient model chassis
 +
          organisms in prokaryotic and eukaryotic organisms. In order to investigatethe
 +
          chassis cells’ tolerance to acrylic acid, we set up a cytotoxicity test where the two
 +
          chassis cells grew in different concentrations of acrylic acid medium, and the
 +
          bacteria OD changes were monitored.The results are as follows:
 +
          <br />
 +
          <img src="https://static.igem.org/mediawiki/2017/a/a8/NPU-image07.png" style="max-width:60%;"><br />
 +
          Fig1. OD of E.coli MG1655 under acrylic acid of different concentration and time
 +
          <br />
 +
          <img src="https://static.igem.org/mediawiki/2017/8/82/NPU-image08.png" style="max-width:60%;"><br />
 +
          Fig2.  OD of S. cerevisiaeBY4741 under acrylic acid of different concentration and time
 +
          <br />
 +
<br>
 +
          Two kinds of chassis cells have different tolerance to acrylic acid. Here we selected
 +
          500mg / L and 1000mg / L two kinds of acrylic acid concentration to analyze:<br />
 +
<br>
 +
          <img src="https://static.igem.org/mediawiki/2017/1/13/NPU-image09.png" style="max-width:60%;"><br />
 +
          Fig3.  A comparison of OD of BY4741 and MG1655 under 500mg/L acrylic acid
 +
          <br />
 +
<br>
 +
          <img src="https://static.igem.org/mediawiki/2017/4/46/NPU-image10.png" style="max-width:60%;"><br />
 +
          Fig4.  A comparison of OD of BY4741 and MG1655 under 1000mg/L acrylic acid
 +
          <br />
 +
<br>
 +
          As can be seen from the results, when the concentration of acrylic acid reached
 +
          500mg / L, E. coli bacterial growth was inhibited or even declined while S.
 +
          cerevisiae normally grew and entered a stable period. And when the concentration of
 +
          acrylic acid reached 1000 mg / L, the growth of S. cerevisiae was then inhibited.<br><br>
 +
          Conclusion: S. cerevisiae has a better tolerance to acrylic acid toxicity than E.
 +
          coli, and may be more suitable for use as chassis cells, and our results of the
 +
          pathway further confirm this conclusion.
 +
          <br />
 +
          </h4>
 +
          <h2 id="section-3" style="padding-top: 100px; margin-top: -50px;">3.Pathway:Successfully build a new acrylic acid synthesis pathway and increase acrylic acid production</h2>
 +
          <h4>
 +
          In order to increase the ability of the chassis cells convert ing glycerol to DHAP or
 +
          4G3P, we designed a new GlyDH-DAK glycerol metabolic pathway. To maintain
 +
          the supply of the reducing power of GlyDH enzymes, the NOX-CAT reducing
 +
          power module was also introduced, which eventually forms the acrylic synthesis
 +
          pathway — GDNCC Pathways.
 +
<br>
 +
          First, we introduced new pathways into two chassis cells through two or three
 +
          plasmid vectors.
 +
  <br>
 +
          <br>pET-28a-ceaS2; pCDFDuet-gld-DAK; pETDuet-NOX-CAT; YCplac33-LEU-ceaS2; YCplac33-LEU-ceaS2-NOX; YCplac33-URA-gld-DAK
 +
<br>
 +
  <br>
 +
<img src="https://static.igem.org/mediawiki/2017/c/c7/NPU-image11.png" style="max-width:60%;">
 +
<img src="https://static.igem.org/mediawiki/2017/0/00/NPU-image12.png" style="max-width:60%;">
 +
<br>
 +
        Fig5 1:E.gld+DAK;2:S-ceaS2;3,E.NOX-CAT;4.S.NOX-ceaS2;5:DAK;6:NOX;7,ceaS2;
 +
            8:gld;9:s.gld-DAK;10:CAT
 +
<br><br>
 +
          We also used the whole cell catalytic reaction and HPLC determination method to determine the amount of acrylic acid produced.
 +
          For E. coli, yields of using new and old synthetic pathways of acrylic acid are as follows:
 +
<br>
 +
          Conditions: reaction time 42h, PH8.0, glycerol concentration 1%
 +
<br>
 +
          <img src="https://static.igem.org/mediawiki/2017/b/b5/NPU-image13.png" style="max-width:60%;"><br />
 +
          It can be seen that the acrylic acid yield is increased by 3 times after the introduction
 +
          of the GlyDH enzyme and the DAK enzyme compared to the introduction of only
 +
          the ceaS2 enzyme in old pathway. And the acrylic acid yield is increased by 8
 +
          times compared to the old one after the addition of the reducing power module. The
 +
          new pathway does enhance the ability of E. colisynthesizing acrylic acid.
 +
<br>
 +
<br>
 +
          As for S. cerevisiae, since S. cerevisiae itself has a higher activity of hydrogen
 +
          peroxide reductase, the reducing power module onlyhas NOX enzyme. Theacrylic
 +
          acid yields ofapplying new and old synthetic pathways are as follows:<br>
 +
          Conditions: reaction time 72h, PH8.0, glycerol concentration 2%
 +
          Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the
 +
          indicator.
 +
          </br>
 +
<br>
 +
          <img src="https://static.igem.org/mediawiki/2017/5/5e/NPU-image14.png" style="max-width:60%;"><br />
 +
<br>
 +
          It can be seen that, similar to the results of E. coli, the introduction of new
 +
          pathways does improve the ability of S. cerevisiae synthesizing acrylic acid. <br>
 +
          Compared the old pathway introduced only ceaS2 enzyme, acrylic acid
 +
          production was increased by 3 times after introduction of GlyDH enzymes and
 +
          DAK enzymes. And the yield of acrylic acid was increased by 5 times compared
 +
          to the old pathway after the addition of the reducing power module.<br>
 +
          We also used CRISPR-CAS9 to optimize the bypass metabolic pathway of the S.
 +
          cerevisiae.
 +
          </br>
 +
          <img src="https://static.igem.org/mediawiki/2017/b/b0/%E9%85%B5%E6%AF%8D%E8%B7%AF%E5%BE%84%E5%9B%BE.png" style="max-width:60%;"><br />
 +
          Colonial verification results show that we have successfully knocked out the S.
 +
          cerevisiae's DLD genes:
 +
          </br>
 +
          <img src="https://static.igem.org/mediawiki/2017/e/e6/NPU-image16.png" style="max-width:60%;"><br />
 +
          Fig 6 S.C BY4741DLD1gene Agarose gel figure of colonies verification after CRISPR
 +
          knockout.<br>
 +
          <br>
 +
          WT is the corresponding nucleic acid stripe of wild-type S.C BY4741; M is a
 +
          GeneRuler 1 kb DNA ladder; lanes 1, 2, 3 are three selected nucleic acid stripes of
 +
          monoclonal colonies.<br>
 +
          We also tested the acrylic acid synthesis ability of the transformed strain. The results
 +
          are as follows:
 +
          Conditions: reaction time 72h, PH8.0, glycerol concentration 2%
 +
          Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the
 +
          indicator.<br />
 +
          <img src="https://static.igem.org/mediawiki/2017/2/2e/NPU-image17.png" style="max-width:60%;"><br />
 +
          It can be seen that the optimization of bypass metabolic flux is conducive to the
 +
          concentration of metabolic flux and improving the yield of acrylic acid. Of coursewe
 +
          also found in the process of the experiment that after knocking out the 9 genes, S.
 +
          cerevisiae colony growth became very slow, indicating that a more tender method
 +
          should be adopted, such as RNAi, to inhibit the bypass pathway.<br />
 +
          </a>
 +
        <br />
 +
          </a>
 +
          <h4>&#160;</h4>
 +
          <h4>&#160;</h4>
 +
          <h2 id="section-4" style="padding-top: 100px; margin-top: -50px;">4.Product:Multi - Conditional Optimization of Acrylic Cell Factory Catalytic Reaction Process</h2>
 +
          <h4>
 +
          There are several important conditions for whole cell reaction: enzyme induction
 +
          temperature, carbon source, Buffer, PH, reaction time. We set different control
 +
          experiments with E.coli BL21 (DE3) as the chassis cells. The results are as follows:
 +
          4.1 The effects of different induction temperatures on the amount of acrylic acid were
 +
          investigated. The results are as follows:
 +
          Induction time: 14h
 +
          </h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/c/c3/NPU-image18.png" style="max-width:60%;"><br />
 +
          <h4>
 +
          It can be seen that when the induction temperature was 30 ℃, the enzyme expression and activity were the highest, and the yield of acrylic acid was the best.</h4>
 +
          </br>
 +
          <h4>
 +
          4.2 the results of production of acrylic acid with different carbon sources
 +
          Condition: PH7.4
 +
          Reaction time: 16h
 +
          Glucose concentration: 4g/L
 +
          Glycerol concentration: 1%<br /></h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/8/80/NPU-image19.png" style="max-width:60%;"><br />
 +
          <h4>
 +
          It can be seen that the yield of acrylic acid was higher when the glycerol was used
 +
          as the carbon source, because the carbon flow rate of the glycerol metabolic
 +
          pathway was more concentrated, thus turning more carbon source into acrylic
 +
          acid. Plus, the glycerol itself owning a higher reducing powermay also be one of
 +
          the reasons.
 +
          4.3  The effects of different pH on the amount of acrylic acid were investigated.
 +
          The results are as follows:
 +
          Reaction conditions: 12h reaction time, 1% concentration of substrate glycerol </h4><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/d/d7/NPU-image20.png" style="max-width:60%;"><br />
 +
          <h4>
 +
          It can be drawn that PH8.0 was most suitable for acrylic acid production; the
 +
          reason may be that alkaline environment made E.coli more resistant to acrylic
 +
          acid.
 +
          4.4 The effect of different Buffer on the amount of acrylic acid were investigated.
 +
          The results are as follows:</h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/8/86/NPU-image21.png" style="max-width:60%;"><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/e/ef/NPU-image22.png" style="max-width:60%;"><br /> <h4>
 +
          It can be seen that the DHa or G3P activity of the two substrates of ceaS2 enzyme was
 +
          higher under PBS buffer condition.
 +
          4.5 The effects of different reaction time on the amount of acrylic acid were investigated. The results are shown as follows </h4><br />
 +
          <img src="https://static.igem.org/mediawiki/2017/c/c2/NPU-image23.png" style="max-width:60%;"><br /> <h4>
 +
          It can be drawn that the yield of acrylic acid reached a higher level after the whole
 +
          cell catalytic reaction endured for 16h. The sampling point should be set after 16h.
 +
            <br />
 +
            <br />
 +
          </h4>
 +
          <h2 id="section-5" style="padding-top: 100px; margin-top: -50px;">5.Conclusion </h2> <h4>
 +
          Due to the time limit of the experiment, we did not have enough time to replace the
 +
          optimal mutation site into the existing cell factory. At present, the highest yield of
 +
          acrylic acid that we have acquired is 211.655 mg / L, which is 200 times than that of
 +
          GAACF1.0. </h4>
 +
          <br />
 +
          <img src="https://static.igem.org/mediawiki/2017/a/a1/NPU-25.png" style="max-width:60%;"><br />
 +
          <h4>
 +
          Fig7. Yeast strain: BY4741-ceaS2-gld-DAK; Condition of whole cell catalysis: PH:
 +
          7.4; Concentration of the substrate glycerol: 2%.
 +
<br>
 +
<br>
 +
The chromatogam of the sample by
 +
          HPLC shows the yield is up to 211.655 mg / L according to the standard curve.
 +
          211.655mg/L , currently this is the highest yield of acrylic acid biosynthesis, where
 +
          glycerol serves as the carbon source.
 +
          As an undergraduate team, in just a few months, we have tried our best to create an
 +
          efficient acrylic cell factory. We were surprised by the huge increase in GAACF 2.0
 +
          production, which is only the production of wild-type ceaS2. Because it is a
 +
          continuing project, we are planning to screen for more active mutants on the basis of
 +
          several productive mutations using HTS for point saturation mutations and
 +
          high-throughput screening. And then, we will transform them into the existing chassis
 +
          organism. We believe that we will create a new technology for acrylic acid production
 +
          which has more industrialization prospect!<br />
 +
            <br />
 +
       
 +
        </div>
 +
      </div>
 +
      <!-- /.row -->
  
    <!-- Page Content -->
+
      <hr>
    <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
+
        <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/3c/%E9%A2%98%E7%9B%AE%E9%80%9A%E6%A0%8Fdemonstrate.jpg">
+
        <div class="container" style="padding-top:70px">
+
            <div class="row">
+
                <div class="col-md-12">
+
               
+
                    <h2 style="text-align:center"> Mutation Design of ceaS2 by using AEMD</h2>
+
<h3>Abstract</h3>
+
<h4>Engineering for the desired enzyme catalytic properties plays an important role in the biosynthesis of bulk chemicals and natural products. However, it is a time-consuming task to improve enzyme catalysis by traditional random mutagenesis. And the utility of rational design based on protein structure often was limited by the lack of protein structure for target enzymes and professional backgrounds of bioinformatics.<br>
+
ceaS2 enzyme is the most important enzyme in our entire acrylic acid synthesis pathway, but the activity of wild type is not high. So it is exceedingly necessary to modify it on the basis of the "part" level to improve its catalytic reactivity. We used the AEMD platform to conduct the mutational design for ceaS2 enzyme in order to figure out a more accurate scheme of mutation, which can also exert great beneficial impact on the later experiments. <br>
+
We have totally identified XX mutational sites, and its point mutation transformation. The experimental results show that there are XX sites, where the enzyme activity gets boosted, after the transformation. Compared to wild type ceaS2 enzyme, the highest activity has increased by XX times, whose effect is obviously noticeable. This also demonstrates the ability of this designing platform. </h4>
+
<h3>Introduction</h3>
+
<h4>Enzyme engineering has been extensively used to optimize biocatalysts in industrial biotechnology since most of enzymes in nature prefer to organisms adaptation but not industrial production (Alvizo, et al., 2014; Ma, et al., 2009; Savile, et al., 2010). Traditionally, optimized enzymes were obtained by random site-directed or saturated mutagenesis such as Error Prone PCR, DNA shuffling and so on (Kabumoto, et al., 2009; Qi, et al., 2009; Reetz and Carballeira, 2007; Yep, et al., 2008). Due to the immense possibility of sequence mutation at amino acids level, it is a time-consuming and low efficiency task to obtain a high efficient biocatalyst by random mutation. <br>
+
With the availability of an increasing number of protein structural and biochemical data, rational design of enzymatic mutation has become more and more popular (Bloom, et al., 2005; Chica, et al., 2005; Kiss, et al., 2013; Li, et al., 2012; Steiner and Schwab, 2012). Many strategies have been used to obtain evolutionary information, catalytic sites and substrate channels by integrating sequence and structural features of enzymes. Previous studies have developed many effective computational tools for enzyme engineering, such as the enzyme design software Rosetta (Leaver-Fay, et al., 2011) and stability design software Foldx (Van, et al., 2011) and so on (Table S2). However, most of them only focus on one feature, like the thermo-stability based on the known PDB structure, and often request professional backgrounds in protein structure, biochemistry, bioinformatics and so on.
+
</h4>
+
  
<h3>What is AEMD?</h3>
+
      <!-- Footer -->
<h4>AEMD is a web-based pipeline, which integrates several approaches together for enzyme stability, selectivity and activity engineering. This pipeline can generate comprehensive reports, which include the recommended mutation for improving enzyme catalytic property. Specifically, users can get the recommended mutation only inputting sequence information of target enzymes, which is very useful in the situation without professional knowledge and the known protein structure, since AEMD contains a functional module that can automatically predict structure of the target enzyme based on the known structures in Protein Data Bank (PDB).<br>
+
AEMD-Web provides a web interface, enabling users to conveniently predict mutants which could improve the stability, selectivity and activity of enzymes. Users can obtain the suggestion of mutations for almost all enzyme even without protein structure. In the future, we will construct a comprehensive enzymatic mutant database and integrate new computing technology, to improve the efficiency of enzyme engineering in industrial biotechnology. </h4>
+
  
+
    </div>
 +
    <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 +
  </div>
 +
  <!-- /.container -->
  
<h4>Fig.1 Workflow of the Stability analysis (A), Selectivity analysis (B) and Activity analysis (C).The blue color rectangle blocks represent the inputs of sequence or PDB file, and the output of recommended mutation sites. The green and gray color rectangle blocks represent the evolution- and energy-based analysis process, respectively. The yellow color diamond blocks represent the use of other softwares and approaches. The processes were shown in Supplementary methods【click here】in more detail.</h4>
 
  
<h3>Process</h3>
 
<h4>This time we utilized AEMD's Stability mode (click here for AEMD user's guide) to screen for mutational sites that benefit the ceaS2 enzyme activity.<br>
 
Because of the complexity of enzyme catalysis, it’s difficult to predict point mutation improving protein activity accurately. How AEMD work?<br>
 
Firstly,the development team of AEMD recently described a method which is able to identify desired mutations by analyzing the coevolution information of protein sequences (Liu, et al., 2016). In the AEMD-web, some point mutations are suggested by this method. Besides, AEMD’s analysis generated some residues close to active center and transport tunnels which are recommended to saturated mutation to improve activity (Fig. 1C). For the input of target protein sequence, AEMD first obtain the PDB file using RosettaCM (Song, et al., 2013). Next, the substrate of template PDB was mapped into target PDB using the “struct_align” funciton of Schrodinger software (QikProp, 2015). The spatial location of substrate in target PDB can help to determine the ligand-binding pocket of target enzyme. If all potential template PDB had no substrate in the PDB file, AEMD predicted the ligand-binding pocket by a Rosetta script (gen_apo_grids.linuxgccrelease) (Zanghellini, et al., 2006). After the determination of ligand-binding pocket, AEMD generated the possible catalytic sites by search local Catalytic Site Atlas (Furnham, et al., 2014); the residues within 5Å distance from ligands by calculating the minimum distance between residue and substrate; and the residues located within 3 Å distance from transport tunnels by CAVER (Chovancova, et al., 2012).(see the Fig.1 (C)) <br>
 
We submitted the amino acid sequence and PDB file of ceaS2 online and got the prediction result in half an hour【结果文件】<br>
 
【结果截图】
 
We first selected the program within the 5Å distance of active site, altogether 33 kinds, and then used point mutation to conduct molecular cloning operation. Next step was to synthesize the acrylic acid using the whole cell catalysis and determined the acrylic acid yield by HPLC. The results are as follows: <br>
 
【33种突变点+wt产量图】
 
In these total 33 programs of mutational sites, there are XX programs with nearly XX% of acrylic acid yield higher than that of the wild type, which indicates a higher activity. The highest mutational site XXX presents a yield XX times the wild type. Therefore, it is valid and tangible for us to implement AEMD to design the mutational sites!
 
</h4>
 
  
                </div>
 
 
            </div>
 
            <!-- Blog Post Row -->
 
 
 
        </div>
 
        <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 
    </div>
 
    </div>
 
  
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 02:22, 2 November 2017

1. Core-part:the activity of rate limiting enzyme ceaS2 has been improved

Acrylic acid is a byproduct of CEAS2 enzyme, the catalytic effect of wild type ceaS2 enzyme is very weak.
We used the AEMD platform to analyze the ceaS2 enzyme and screened the 38 mutants in the range of 5 Å around the active site to carry out molecular cloning of point mutation, and then tested the acrylic acid yield by HPLC after whole cell catalysis. Because there are a large number of mutants, we divided them into five batches to carry out the reaction, the results are as follows:






In the figure, the horizontal axis stands for each different point mutation. We selected two reaction times 21h and 42h, the vertical axis is acrylic acid production (mg / L).
Due to the differences in wild type between different batches, we will normalize all the data in order to facilitate the analysis of the catalytic effect of each mutation point compared to the respective WT, that is, to compare each mutation point to The batch WT yield multiple is a new indicator, the result is as follows:


The horizontal axis in the figure is the position of each mutational site, and the vertical axis is the multiple of the acrylic acid yield of each mutational site compared to each corresponding batch of the wild type. It can be seen that there were 11 mutational sites, whose yields were higher than the wild type ceaS2, in the 38 mutant programs, and the F438M mutant had the highest yield of 11 times the wild type. The effect was significant.

2.System:S. cerevisiae is more suitable for chassis cells than E. coli

Acrylic acid has strong chemical reactivity and is very destructive to cell membrane. Therefore, the chassis cells’ tolerance to acrylic acid is a "roof" factor that restricts high yield of acrylic acid.
We chose E. coli and S. cerevisiae, the two most convenient model chassis organisms in prokaryotic and eukaryotic organisms. In order to investigatethe chassis cells’ tolerance to acrylic acid, we set up a cytotoxicity test where the two chassis cells grew in different concentrations of acrylic acid medium, and the bacteria OD changes were monitored.The results are as follows:

Fig1. OD of E.coli MG1655 under acrylic acid of different concentration and time

Fig2. OD of S. cerevisiaeBY4741 under acrylic acid of different concentration and time

Two kinds of chassis cells have different tolerance to acrylic acid. Here we selected 500mg / L and 1000mg / L two kinds of acrylic acid concentration to analyze:


Fig3. A comparison of OD of BY4741 and MG1655 under 500mg/L acrylic acid


Fig4. A comparison of OD of BY4741 and MG1655 under 1000mg/L acrylic acid

As can be seen from the results, when the concentration of acrylic acid reached 500mg / L, E. coli bacterial growth was inhibited or even declined while S. cerevisiae normally grew and entered a stable period. And when the concentration of acrylic acid reached 1000 mg / L, the growth of S. cerevisiae was then inhibited.

Conclusion: S. cerevisiae has a better tolerance to acrylic acid toxicity than E. coli, and may be more suitable for use as chassis cells, and our results of the pathway further confirm this conclusion.

3.Pathway:Successfully build a new acrylic acid synthesis pathway and increase acrylic acid production

In order to increase the ability of the chassis cells convert ing glycerol to DHAP or 4G3P, we designed a new GlyDH-DAK glycerol metabolic pathway. To maintain the supply of the reducing power of GlyDH enzymes, the NOX-CAT reducing power module was also introduced, which eventually forms the acrylic synthesis pathway — GDNCC Pathways.
First, we introduced new pathways into two chassis cells through two or three plasmid vectors.

pET-28a-ceaS2; pCDFDuet-gld-DAK; pETDuet-NOX-CAT; YCplac33-LEU-ceaS2; YCplac33-LEU-ceaS2-NOX; YCplac33-URA-gld-DAK


Fig5 1:E.gld+DAK;2:S-ceaS2;3,E.NOX-CAT;4.S.NOX-ceaS2;5:DAK;6:NOX;7,ceaS2; 8:gld;9:s.gld-DAK;10:CAT

We also used the whole cell catalytic reaction and HPLC determination method to determine the amount of acrylic acid produced. For E. coli, yields of using new and old synthetic pathways of acrylic acid are as follows:
Conditions: reaction time 42h, PH8.0, glycerol concentration 1%

It can be seen that the acrylic acid yield is increased by 3 times after the introduction of the GlyDH enzyme and the DAK enzyme compared to the introduction of only the ceaS2 enzyme in old pathway. And the acrylic acid yield is increased by 8 times compared to the old one after the addition of the reducing power module. The new pathway does enhance the ability of E. colisynthesizing acrylic acid.

As for S. cerevisiae, since S. cerevisiae itself has a higher activity of hydrogen peroxide reductase, the reducing power module onlyhas NOX enzyme. Theacrylic acid yields ofapplying new and old synthetic pathways are as follows:
Conditions: reaction time 72h, PH8.0, glycerol concentration 2% Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the indicator.



It can be seen that, similar to the results of E. coli, the introduction of new pathways does improve the ability of S. cerevisiae synthesizing acrylic acid.
Compared the old pathway introduced only ceaS2 enzyme, acrylic acid production was increased by 3 times after introduction of GlyDH enzymes and DAK enzymes. And the yield of acrylic acid was increased by 5 times compared to the old pathway after the addition of the reducing power module.
We also used CRISPR-CAS9 to optimize the bypass metabolic pathway of the S. cerevisiae.

Colonial verification results show that we have successfully knocked out the S. cerevisiae's DLD genes:

Fig 6 S.C BY4741DLD1gene Agarose gel figure of colonies verification after CRISPR knockout.

WT is the corresponding nucleic acid stripe of wild-type S.C BY4741; M is a GeneRuler 1 kb DNA ladder; lanes 1, 2, 3 are three selected nucleic acid stripes of monoclonal colonies.
We also tested the acrylic acid synthesis ability of the transformed strain. The results are as follows: Conditions: reaction time 72h, PH8.0, glycerol concentration 2% Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the indicator.

It can be seen that the optimization of bypass metabolic flux is conducive to the concentration of metabolic flux and improving the yield of acrylic acid. Of coursewe also found in the process of the experiment that after knocking out the 9 genes, S. cerevisiae colony growth became very slow, indicating that a more tender method should be adopted, such as RNAi, to inhibit the bypass pathway.

 

 

4.Product:Multi - Conditional Optimization of Acrylic Cell Factory Catalytic Reaction Process

There are several important conditions for whole cell reaction: enzyme induction temperature, carbon source, Buffer, PH, reaction time. We set different control experiments with E.coli BL21 (DE3) as the chassis cells. The results are as follows: 4.1 The effects of different induction temperatures on the amount of acrylic acid were investigated. The results are as follows: Induction time: 14h


It can be seen that when the induction temperature was 30 ℃, the enzyme expression and activity were the highest, and the yield of acrylic acid was the best.


4.2 the results of production of acrylic acid with different carbon sources Condition: PH7.4 Reaction time: 16h Glucose concentration: 4g/L Glycerol concentration: 1%


It can be seen that the yield of acrylic acid was higher when the glycerol was used as the carbon source, because the carbon flow rate of the glycerol metabolic pathway was more concentrated, thus turning more carbon source into acrylic acid. Plus, the glycerol itself owning a higher reducing powermay also be one of the reasons. 4.3 The effects of different pH on the amount of acrylic acid were investigated. The results are as follows: Reaction conditions: 12h reaction time, 1% concentration of substrate glycerol



It can be drawn that PH8.0 was most suitable for acrylic acid production; the reason may be that alkaline environment made E.coli more resistant to acrylic acid. 4.4 The effect of different Buffer on the amount of acrylic acid were investigated. The results are as follows:



It can be seen that the DHa or G3P activity of the two substrates of ceaS2 enzyme was higher under PBS buffer condition. 4.5 The effects of different reaction time on the amount of acrylic acid were investigated. The results are shown as follows



It can be drawn that the yield of acrylic acid reached a higher level after the whole cell catalytic reaction endured for 16h. The sampling point should be set after 16h.

5.Conclusion

Due to the time limit of the experiment, we did not have enough time to replace the optimal mutation site into the existing cell factory. At present, the highest yield of acrylic acid that we have acquired is 211.655 mg / L, which is 200 times than that of GAACF1.0.



Fig7. Yeast strain: BY4741-ceaS2-gld-DAK; Condition of whole cell catalysis: PH: 7.4; Concentration of the substrate glycerol: 2%.

The chromatogam of the sample by HPLC shows the yield is up to 211.655 mg / L according to the standard curve. 211.655mg/L , currently this is the highest yield of acrylic acid biosynthesis, where glycerol serves as the carbon source. As an undergraduate team, in just a few months, we have tried our best to create an efficient acrylic cell factory. We were surprised by the huge increase in GAACF 2.0 production, which is only the production of wild-type ceaS2. Because it is a continuing project, we are planning to screen for more active mutants on the basis of several productive mutations using HTS for point saturation mutations and high-throughput screening. And then, we will transform them into the existing chassis organism. We believe that we will create a new technology for acrylic acid production which has more industrialization prospect!