Difference between revisions of "Team:UNOTT/Description"

 
(108 intermediate revisions by 3 users not shown)
Line 4: Line 4:
  
 
<head>
 
<head>
 +
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<meta charset="UTF-8">
 
<meta charset="UTF-8">
 
<link href="https://fonts.googleapis.com/css?family=Karla" rel="stylesheet">
 
<link href="https://fonts.googleapis.com/css?family=Karla" rel="stylesheet">
<style>
 
body {
 
    font-family: 'Karla', sans-serif;
 
}
 
  
 
<style>
 
<style>
Line 17: Line 14:
 
       ===================================*/
 
       ===================================*/
 
       body {
 
       body {
       color: #183532;
+
      
 
       font-family: 'Lato', sans-serif;
 
       font-family: 'Lato', sans-serif;
 
       font-weight: 400;
 
       font-weight: 400;
Line 81: Line 78:
 
       .section-two,
 
       .section-two,
 
       .section-three {
 
       .section-three {
      background: #fff;
+
        margin: auto;
 +
    width: 60%;
 +
    padding: 10px;
 +
    font-family: 'Karla', sans-serif;
 +
    background-color: #ffffff;
 +
     
 
       }
 
       }
  
Line 107: Line 109:
 
       .img-designers,
 
       .img-designers,
 
       .img-developers {
 
       .img-developers {
       height: 250px;
+
       height: 400px;
       width: 250px;
+
       width: 400px;
 
       background-position: center center;
 
       background-position: center center;
 
       background-size: cover;
 
       background-size: cover;
Line 158: Line 160:
 
}
 
}
  
      h1 {
+
   
          font-size: 300px;
+
         
+
    }
+
 
.maintext {
 
.maintext {
 
position: absolute;
 
position: absolute;
Line 179: Line 178:
 
}
 
}
  
 +
.contentmargin {
 +
    margin: auto;
 +
    width: 60%;
 +
    padding: 10px;
 +
    font-family: 'Karla', sans-serif;
 +
    background-color: #ffffff;
 +
}
 +
 +
h1 {
 +
  font-weight: normal;
 +
  letter-spacing: -1px;
 +
  color: #34495E;
 +
}
 +
h2 {
 +
  font-weight: normal;
 +
  letter-spacing: -1px;
 +
  color: #34495E;
 +
}
 +
p {
 +
  font-weight: normal;
 +
  letter-spacing: -1px;
 +
  color: #4b524a;
 +
 +
.ourkey {
 +
position: relative;
 +
top:15px;
 +
}
 +
h5 {
 +
  font-weight: normal;
 +
  letter-spacing: -1px;
 +
  color: #4b524a;
 
</style>
 
</style>
 
</head>
 
</head>
Line 191: Line 221:
 
</div>
 
</div>
  
 
+
<br>
 +
<br>
 +
<br>
 
<!-- Section Two; -->
 
<!-- Section Two; -->
 
<section class="container section-two" id="spydesingers">
 
<section class="container section-two" id="spydesingers">
 
<div class="row">
 
<div class="row">
 
<div class="col-md-6 to-match">
 
<div class="col-md-6 to-match">
<h2 style="color:#4b524a;">What?</h2>
+
<h1>What?</h1>
 
<article>
 
<article>
<p><em>Key. coli</em> provides a new, more secure form of key for accessing content. It uses random ligations and large modular repertoires of possible components to generate unique combinations that could be the next thing in security.
+
<p><b><i>Key. coli</i> provides a new, more secure, form of key for accessing content.</b> It uses random ligations and large repertoires of possible components to generate unique combinations of expression profiles; this next generation biological key could be the next BIG thing in security; watch this space!
 +
 
 
</p>
 
</p>
                    <p></p>
+
                 
 
 
<p>
+
</p>
+
<p
+
</p>
+
 
</article>
 
</article>
 
</div>
 
</div>
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
+
<img src="https://static.igem.org/mediawiki/2017/archive/b/b0/20171026145318%21T--UNOTT--openlock.png" class="img-responsive img-circle img-designers">
+
<img class="ourkey" src="https://static.igem.org/mediawiki/2017/3/36/T--UNOTT--keyk.png" style="width:40%;height:auto;">
</div>
+
</section>
+
<!--//Close Section Two -->
+
+
+
<!--// Section Three -->
+
<section class="container section-three" id="spydevelopers">
+
<div class="row">
+
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
+
<div>
+
<img src="https://static.igem.org/mediawiki/2017/e/e4/T--UNOTT--ourkey.png" class="img-circle img-responsive img-developers"></div>
+
</div>
+
<div class="col-md-6">
+
<h2 style="color:#4b524a;">Our solution</h2>
+
<article>
+
<p>
+
A randomly assorted biometric which utilises CRISPRi to synthesise a random fluorescent key in <i>E. coli</i>. Our security system is called <i> Key. coli </i>.
+
</p>
+
<p>
+
</p>
+
<p>
+
</p>
+
</article>
+
</div>
+
</div>
+
</section>
+
<!--//Close Section Three -->
+
  
 +
  
<!-- Section Four; -->
 
<section class="container section-two" id="spydesingers">
 
<div class="row">
 
<div class="col-md-6 to-match">
 
<h2 style="color:#4b524a;">What?</h2>
 
<article>
 
<p><em>Key. coli</em> provides a new, more secure form of key for accessing content. It uses random ligations and large modular repertoires of possible components to generate unique combinations that could be the next thing in security.
 
</p>
 
                    <p></p>
 
 
 
<p>
 
</p>
 
<p
 
</p>
 
</article>
 
</div>
 
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
 
<img src="https://static.igem.org/mediawiki/2017/archive/b/b0/20171026145318%21T--UNOTT--openlock.png" class="img-responsive img-circle img-designers">
 
</div>
 
 
</section>
 
</section>
<!--//Close Section Four -->
+
<!--//Close Section Two -->
 
 
 
 
<!--// Section Five -->
+
<section class="container section-three" id="spydevelopers">
+
<div class="contentmargin">
<div class="row">
+
<h1>Why?</h1>
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
+
<div>
+
<img src="https://static.igem.org/mediawiki/2017/e/e4/T--UNOTT--ourkey.png" class="img-circle img-responsive img-developers"></div>
+
  <p><b>Major hacking incidents are increasingly common,</b> with accounts being hacked and sensitive information stolen. Many companies are moving away from conventional passwords, which are proving to be unreliable in the hands of the public. Banks are now using physical biometric authentication procedures to correctly identify account owners. This new direction opens a market for biological “passwords”. An ideal system would be as separate from online software programs as possible while maintaining the complexity and uniqueness of a biometric system. Cells are effectively living computers, so we can programme cells to act as a changeable biometric password. </p>
</div>
+
<div class="col-md-6">
+
 
<h2 style="color:#4b524a;">Our solution</h2>
+
 
<article>
+
 
<p>
+
  A randomly assorted biometric which utilises CRISPRi to synthesise a random fluorescent key in <i>E. coli</i>. Our security system is called <i> Key. coli </i>.
+
</p>
+
<p>
+
</p>
+
<p>
+
</p>
+
</article>
+
</div>
+
</div>
+
</section>
+
<!--//Close Section Five -->
+
+
+
<!--// Section Six -->
+
<section class="container section-three" id="spydevelopers">
+
<div class="row">
+
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
+
<div>
+
<img src="https://static.igem.org/mediawiki/2017/e/e4/T--UNOTT--ourkey.png" class="img-circle img-responsive img-developers"></div>
+
</div>
+
<div class="col-md-6">
+
<h2 style="color:#4b524a;">Our solution</h2>
+
<article>
+
<p>
+
A randomly assorted biometric which utilises CRISPRi to synthesise a random fluorescent key in <i>E. coli</i>. Our security system is called <i> Key. coli </i>.
+
</p>
+
<p>
+
</p>
+
<p>
+
</p>
+
</article>
+
</div>
+
</div>
+
</section>
+
<!--//Close Section Six -->
+
  
 
<!--// Section Seven -->
 
<section class="container section-three" id="spydevelopers">
 
<div class="row">
 
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
 
<div>
 
<img src="https://static.igem.org/mediawiki/2017/e/e4/T--UNOTT--ourkey.png" class="img-circle img-responsive img-developers"></div>
 
</div>
 
<div class="col-md-6">
 
<h2 style="color:#4b524a;">Our solution</h2>
 
<article>
 
<p>
 
A randomly assorted biometric which utilises CRISPRi to synthesise a random fluorescent key in <i>E. coli</i>. Our security system is called <i> Key. coli </i>.
 
</p>
 
<p>
 
</p>
 
<p>
 
</p>
 
</article>
 
</div>
 
</div>
 
</section>
 
<!--//Close Section Seven -->
 
  
+
<h1>How?</h1>
<!--// Section Eight -->
+
 
<section class="container section-three" id="spydevelopers">
+
<p><b>A key must be unique, measurable and unpredictable.</b> In <i>Key. coli</i>, all these requirements are achieved by the random generation of modular vectors that are expressed in Escherichia coli to produce a unique and detectable fluorescent pattern. This pattern is obtained when different fluorescent proteins (GFP, RFP, CFP) and various promoters, subjected to transcription interference by dCas9, are randomly combined during ligation and transformed into the cells to generate the key. </p>
<div class="row">
+
<p><span style="color: #ffffff;">&nbsp;</span></p>
<div class="col-md-6 css-img-wrapper hidden-xs hidden-sm">
+
<p><span style="color: #ffffff;">&nbsp;</span></p>
<div>
+
 
<img src="https://static.igem.org/mediawiki/2017/e/e4/T--UNOTT--ourkey.png" class="img-circle img-responsive img-developers"></div>
+
<img src="https://static.igem.org/mediawiki/2017/8/84/UNOTT2017-How1.png" alt="" width="100%" height="100%">
</div>
+
<h5><b> Figure 1:</b> Two-plasmid modular process used to generate random<i>Key. coli</i> construct(s)<p>
<div class="col-md-6">
+
<p><span style="color: #ffffff;">&nbsp;</span></p>
<h2 style="color:#4b524a;">Our solution</h2>
+
<p><span style="color: #ffffff;">&nbsp;</span></p><p><span style="color: #ffffff;">&nbsp;</span></p>
<article>
+
<p><span style="color: #ffffff;">&nbsp;</span></p>
<p>
+
<img src="https://static.igem.org/mediawiki/2017/b/bc/UNOTT2017-How2.png" alt="" width="100%" height="100%"></h5>
A randomly assorted biometric which utilises CRISPRi to synthesise a random fluorescent key in <i>E. coli</i>. Our security system is called <i> Key. coli </i>.
+
 
</p>
+
<h5><b>Figure 2:</b> Random ligation process and colony picking allows large numbers of plasmid variants to be created for use in keys. </p> <p><span style="color: #ffffff;">&nbsp;</span></p></h5>
<p>
+
<p><span style="color: #ffffff;">&nbsp;</span></p>
</p>
+
<br>
<p>
+
<p>A key transport device, based on freeze-dried <i>Key. coli</i>, allows the bacteria to survive and be transported anywhere with ease. Once entry to a lock is desired, the <i>Key. coli</i> device can be activated, and the output read in a suitable detection device. </p>
</p>
+
 
</article>
+
<h1><i>Key. coli</i> Summary</h1>
</div>
+
</div>
+
</section>
+
<p><img src="https://static.igem.org/mediawiki/2017/8/83/UNOTT2017-summary.png" alt="" width="100%" height="auto" /></p>
<!--//Close Section Eight -->
+
<br>
<div class="contentmargin"
+
<br>
<p></p>
+
<br>
 +
<br>
 +
 +
 
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>
 
{{:Team:UNOTT/Template/Footer}}
 
{{:Team:UNOTT/Template/Footer}}

Latest revision as of 03:45, 2 November 2017

 

 

 

PROJECT DESCRIPTION

 




What?

Key. coli provides a new, more secure, form of key for accessing content. It uses random ligations and large repertoires of possible components to generate unique combinations of expression profiles; this next generation biological key could be the next BIG thing in security; watch this space!

Why?

Major hacking incidents are increasingly common, with accounts being hacked and sensitive information stolen. Many companies are moving away from conventional passwords, which are proving to be unreliable in the hands of the public. Banks are now using physical biometric authentication procedures to correctly identify account owners. This new direction opens a market for biological “passwords”. An ideal system would be as separate from online software programs as possible while maintaining the complexity and uniqueness of a biometric system. Cells are effectively living computers, so we can programme cells to act as a changeable biometric password.

How?

A key must be unique, measurable and unpredictable. In Key. coli, all these requirements are achieved by the random generation of modular vectors that are expressed in Escherichia coli to produce a unique and detectable fluorescent pattern. This pattern is obtained when different fluorescent proteins (GFP, RFP, CFP) and various promoters, subjected to transcription interference by dCas9, are randomly combined during ligation and transformed into the cells to generate the key.

 

 

Figure 1: Two-plasmid modular process used to generate randomKey. coli construct(s)

 

 

 

 

Figure 2: Random ligation process and colony picking allows large numbers of plasmid variants to be created for use in keys.

 

 


A key transport device, based on freeze-dried Key. coli, allows the bacteria to survive and be transported anywhere with ease. Once entry to a lock is desired, the Key. coli device can be activated, and the output read in a suitable detection device.

Key. coli Summary