Difference between revisions of "Team:UCopenhagen/InterLab"

Line 27: Line 27:
 
             <div>
 
             <div>
 
                     <div class="clearfix"></div>
 
                     <div class="clearfix"></div>
                     <h2 class="section-heading">Introduction </h2>
+
                     <h2 class="section-heading"><strong>DTU Biobuilders’ BioBrick Weekend</strong>(February, 2017)
                     <p class="lead">We participated in InterLitab, as we want to be contribute to the scientific progress made through this globe spanning project. In InterLab, 6 test devices are inserted in <i>E.coli</i> D5 α, and the growth and fluorescence is measured. <br><br>
+
</h2>
 
+
                     <p class="lead">
We used the following plasmids provided by iGEM HQ to transform <i>E.coli</i>:
+
 
<ul style="text-align:left; color:white;">
 
<ul style="text-align:left; color:white;">
<li>Positive control</li>
+
<li>DTU-Denmark (Denmark) </li>
<li>Negative control</li>
+
<li>SDU-Denmark (Denmark)</li>
<li>Test Device 1: J23101+I13504 </li>
+
<li>NTNU Trondheim (Norway) </li>
<li>Test Device 2: J23106+I13504 </li>
+
<li>Chalmers-Gothenburg (Sweden) </li>
<li>Test Device 3: J23117+I13504  </li>
+
<li>Test Device 4: J23101.BCD2.E0040.B0015 </li>
+
<li>Test Device 5: J23106.BCD2.E0040.B0015 </li>
+
<li>Test Device 6: J23117.BCD2.E0040.B0015 </li>
+
 
</ul>
 
</ul>
 +
<br><br>
 +
 +
An inspiring and practical three-day introduction to iGEM hosted by our friends and closest neighbours. Workshops covered the structure of the competition, hands-on laboratory experience in BioBrick assembly and debate of the ethical considerations surrounding synthetic biology.
 +
 
</p>                 
 
</p>                 
 
     </div>
 
     </div>

Revision as of 11:38, 31 October 2017

I N T E R L A B

DTU Biobuilders’ BioBrick Weekend(February, 2017)

  • DTU-Denmark (Denmark)
  • SDU-Denmark (Denmark)
  • NTNU Trondheim (Norway)
  • Chalmers-Gothenburg (Sweden)


An inspiring and practical three-day introduction to iGEM hosted by our friends and closest neighbours. Workshops covered the structure of the competition, hands-on laboratory experience in BioBrick assembly and debate of the ethical considerations surrounding synthetic biology.


Calibrations

Before our measurements began, we performed some calibrations: First an OD600 reference point for our plate reader, performed with LUDOX according to the protocol. Here we found a correction factor which can be used to calculate OD from measured absorbance. Our correction fator is 3.11.

Secondly we made a fluorescence standard curve with a serial dilution of fluorescein (figure 1). We used the lower 5 data points to calculate a mean µM fluorescein pr a.u. We chose to use the lower concentration range due to two factors: 1) Linearity is better for the lower fluorescein concentrations, and 2) our measured data has a maximum fluorescence of 500, which makes it more important to have a good fit in the lower range.



Figure 1 Standard curve of fluorescein fluorescence. Fluorescence in arbitraty units (a.u.), fluorescein concentration in µM.

Cell measurements

Two colonies from each transformation were picked, and grown in foil-covered 50 ml falcon tubes over night (18 hours).

Preparation OD was measured, and a dilution was calculated to achieve an OD of 0.02. Dilution calculations can be found in the table next to this. Here we used the calculated correction factor from our initial abs/OD calibration. From the absorption measurements taken at 0 hours, we see indications of pipetting errors, as the OD600 (average) ranges from 0.015 to 0.6 (table 1).

OD600

Cell growth stagnated between 4 and 6 hours. Cells transformed with Test Device 1 and 4 grew slower than the 6 other transformations, and even decreased in OD between 4 and 6 hours. Click on figures for enlarged images:

Fluorescence


Some transformed cells continue to increase fluorescence despite a decrease in OD in the same samples. Devices 3 and 6 are very close to the negative control in fluorescence. Click on figures for enlarged images:

Conclusion

Our data indicate which plasmid elements induce the highest production of GFP. Plasmids containing J23117 (Test devices 3 and 6) does not express fluorescence to a higher degree than the negative control. Plasmids with J23101 (Device 1 and 4) induced the highest fluorescence, and plasmids containing J23106 (Test devices 2 and 5) were somewhere in between. Combining the J23101 or J23106 with I13504 (Test devices 1-3) gave a higher fluorescence than adding BCD2.E0040.B0015 (Test devices 4-6).

These results are not reliable on their own, but will be more robust and reliable when combined with data from the other teams participating in the interlab study.

Find Incell here: