Team:Queens Canada/Overview

THIS IS THE PROJECT OVERVIEW PAGE



Biofilms


In nature, the majority of bacteria exist as biofilms. Biofilms are organized bacterial communities that grow on an extracellular matrix scaffold composed mostly of polysaccharides, proteins and nucleic acids [2]. Biofilms typically carry negative connotations, particularly in medical settings where they are associated with antibiotic-resistant infections. However, we can exploit the same traits that make biofilms a formidable healthcare challenge to create engineered biomaterials. Bacteria in biofilms have several characteristic advantages over their planktonic (free-living) counterparts [2]:

  • Enhanced resource capture and processing
  • Facilitated social communication (quorum sensing)
  • Protection against environmental stress (i.e. antibiotics, shear stress)

  • Our engineered E. coli (expressing our CsgA fusions) can provide the oil-degrading M. hydrocarbonoclasticus with an ice-binding biofilm scaffold, significantly increasing its ability to survive and degrade hydrocarbons in harsh Arctic conditions.



    Marinobacter hydrocarbonoclasticus

    As the name of this Gram-negative bacteria would suggest, it loves to degrade petroleum hydrocarbons. The species was first isolated from the waters of the Mediterranean, where it frequently forms oleolytic biofilms [3, 4]. The hydrophobic organic molecules that it degrades are used as a source of carbon and metabolic energy. We had originally considered directly fusing hydrocarbon-degrading enzymes (i.e. ethylbenzene dehydrogenase) onto CsgA. However, since individual enzymes function poorly outside of the cell, we opted to append whole M. hydrocarbonoclasticus bacterial cells instead. When it comes to optimal hydrocarbon degradation, you can’t beat Nature!