Difference between revisions of "Team:ETH Zurich"

 
(346 intermediate revisions by 6 users not shown)
Line 5: Line 5:
 
{{ETH_Zurich/Head_N_Suffix}}
 
{{ETH_Zurich/Head_N_Suffix}}
 
{{ETH_Zurich/Header_N}}
 
{{ETH_Zurich/Header_N}}
 
 
<html>
 
<html>
  
<style>
 
  
a {
+
<main>
                color: #000000;
+
                font-weight: 900;
+
}           
+
  
img.CH {
+
<div class="banner">
                width: 100;
+
<figure class="banner" id="banner">
                float: right;
+
    <img src="https://static.igem.org/mediawiki/2017/c/c3/T--ETH_Zurich--Banner.png" alt="CATE" />
}
+
</figure>
  
</style>
 
  
<main role="main">
+
<figure class="scroll">
 
+
<a class="scroll-down-button" href="#scrollstart">
<div id="title">
+
    <img src="https://static.igem.org/mediawiki/2017/1/14/T--ETH_Zurich--Scroll.png">
    <a href="https://2017.igem.org/Team:ETH_Zurich">
+
</a>
        <img src="https://static.igem.org/mediawiki/2017/c/c3/T--ETH_Zurich--Banner.png"/>
+
<figure>
    </a>
+
 
</div>
 
</div>
  
<a href="#start">
+
<section id="scrollstart"></section>
    <img class="scroll-ico" src="https://static.igem.org/mediawiki/2017/1/14/T--ETH_Zurich--Scroll.png" class="CH">
+
</a>
+
  
 
<section id="start" class="step">
 
<section id="start" class="step">
     <div>
+
     <div class="why">
         <p>Cancer kills over 8 million people every year. That's the entire population of Switzerland!</p>
+
    <h1>WHY</h1>
         <p>We need more specific therapies because current approaches result in many side-effects. Thats why we invented CATE (Cancer-Targeting <i>E. coli</i>), the first all-in-one  
+
         <p>Cancer kills over 8 million people every year. That's as much as the entire population of Switzerland!</p>
              living cancer therapeutic with an integrated two-step safety mechanism.</p>
+
         <p>We need more specific therapies because current approaches result in many side-effects. That's why we invented <span title="Came close to being FUSBa (<yyyeaah no ;))">CATE</span>, the first all-in-one living cancer therapeutic with an integrated two-step safety mechanism.
         <p>That's why we created CATE: Cancer-Targeting E. coli.</p>
+
         <p>A living cure to a living disease!</p>
         <p><a href="https://2017.igem.org/Team:ETH_Zurich/Background">Learn more</a></p>
+
        <br>
 +
         <p><a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more"> BACKGROUND</a></p>
 
     </div>
 
     </div>
    <img src="https://static.igem.org/mediawiki/2017/9/99/T--ETH_Zurich--CH.png" class="CH">
 
   
 
 
</section>
 
</section>
  
<section id="second" class="step invert">
+
 
     <div>
+
 
         <p>CATE consists of the non-pathogenic bacterium  E. coli Nissle that has the intrinsic ability to home specifically in tumors.<br><br> We are engineering E. coli Nissle to carry a MRI contrast and a cytotoxic agent so it can deliver both components to tumor sites.</p>
+
<section id="second" class="step">
 +
     <div class="vision">
 +
<figure class="EcN">
 +
        <img src="https://static.igem.org/mediawiki/2017/0/02/T--ETH_Zurich--Ec.png">
 +
</figure>
 +
<br>
 +
<br>
 +
    <h1>VISION</h1>
 +
         <p>To tackle the challenge of treating cancer, we decided to look beyond classical approaches and from the point of view of a synthetic biologist. </p>
 +
        <p>Our search led us to the concept of bacterial cancer therapy.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more">STORY OF CATE</a></p>
 
     </div>
 
     </div>
    <img src="https://static.igem.org/mediawiki/2017/0/02/T--ETH_Zurich--Ec.png" class="Ec">
+
 
    <a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more">Project description</a>
+
 
</section>
 
</section>
 +
 +
 +
 +
<div class="space">
 +
  &nbsp;
 +
</div>
 +
  
 
<section id="third" class="step">
 
<section id="third" class="step">
 
     <div>
 
     <div>
         <p>CATE is administered intravenously, travels through the blood and colonizes tumors where the bacteria form a highly dense layer between the live and dead zone of the tumor</p>
+
        <p>CATE consists of the non-pathogenic bacterium <span class="bacterium">E. coli</span> Nissle that has the intrinsic ability to home preferentially in tumors.</p>
         <p class="alignright">The high density of bacterial cells and the overproduction of lactate by the tumor together activate the first steps of CATE.</p>
+
        <p>It features two safety checkpoint mechanisms to ensure only tumor cells are damaged.</p>
 +
         <p>CATE is administered intravenously, travels through the blood and colonizes tumors. When enough bacteria have accumulated in the tumor, they make themselves visible and  
 +
      start preparing the cytotoxic payload.</p>  
 +
         <p> After imaging the tumor with MRI, the doctor can then activate the release of the cancer-killing payload. </p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Applied_Design" class="more">CATE IN ACTION</a></p>
 
     </div>
 
     </div>
    <img src="https://static.igem.org/mediawiki/2017/8/8c/T--ETH_Zurich--ANDgate.png" class="AND">
+
 
    <a href="https://2017.igem.org/Team:ETH_Zurich/#" class="more">Design</a>
+
 
 +
<figure class="process">
 +
  <img src="https://static.igem.org/mediawiki/2017/c/cf/T--ETH_Zurich--process.png">
 +
</figure>
 
</section>
 
</section>
  
  
<section id="second" class="step invert">
+
 
 +
<div class="space">
 +
  &nbsp;
 +
</div>
 +
 
 +
<section id="fourth" class="step">
 +
<div class="circuit">
 +
<br>
 +
<br>
 +
<br>
 +
<figure class="andgate">
 +
  <img src="https://static.igem.org/mediawiki/2017/8/8c/T--ETH_Zurich--ANDgate.png">
 +
</figure>
 
     <div>
 
     <div>
         <p>CATE consists of the non-pathogenic bacterium  E. coli Nissle that has the intrinsic ability to home specifically in tumors.<br><br> We are engineering E. coli Nissle to carry a MRI contrast and a cytotoxic agent so it can deliver both components to tumor sites.</p>
+
 
 +
         <p>To achieve all these novel functions, we designed a genetic circuit that is distributed over two synthetic DNA sequences.</p>
 +
        <p> All functions were tested and optimized to make the resulting circuit as safe and well-characterized as possible.</p>
 +
        <br>
 +
      <p><a href="https://2017.igem.org/Team:ETH_Zurich/Circuit" class="more">CIRCUIT</a></p>
 
     </div>
 
     </div>
    <img src="https://static.igem.org/mediawiki/2017/0/02/T--ETH_Zurich--Ec.png" class="Ec">
 
    <a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more">Project description</a>
 
 
</section>
 
</section>
  
  
 +
<section id="fifth" class="step">
 +
<div class="drylab">
 +
<figure class="drylab">
 +
  <img src="https://static.igem.org/mediawiki/2017/0/0b/T--ETH_Zurich--dry_lab.png">
 +
</figure>
 +
<br>
 +
<h1>ENGINEERING</h1>
 +
        <p>We increased the understanding of the system's underlying mathematics by simulating its behavior with our models.</p><p> The models were then used to define important questions to clarify in experiments and develop efficient experimental and genetic design strategies.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Model" class="more">DRY LAB</a></p>
 +
  </div>
 +
</section>
  
</main>
 
  
 +
<section>
 +
    <div class="wetlab">
 +
<figure class="wetlab">
 +
  <img src="https://static.igem.org/mediawiki/2017/9/95/T--ETH_Zurich--wetlab.png">
 +
</figure>
 +
<br>
 +
        <p>Experimentally, we collected data to support and refine our models and to show that our system works.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Experiments" class="more">WET LAB</a></p>
 +
    </div>
 +
</section>
 +
 +
 +
<section>
 +
    <div class="goals">
 +
<figure class="goals">
 +
    <img src="https://static.igem.org/mediawiki/2017/8/83/T--ETH_Zurich--achievementslanding.png">
 +
</figure>
 +
    <h1>ACHIEVEMENTS</h1>
 +
        <p>We could experimentally confirm the predictions of the models. After testing every function individually, we combined them one after the other in milestone experiments to show the system in action.</p> <p> We created and characterized new BioBrick parts as a contribution for the synthetic biology community.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Results" class="more">ACHIEVEMENTS</a></p>
 +
    </div>
 +
</section>
 +
 +
 +
<section>
 +
  <div class="HP">
 +
    <h1>HUMAN PRACTICES</h1>
 +
<figure class="HP">
 +
    <img src="https://static.igem.org/mediawiki/2017/4/4a/T--ETH_Zurich--HPlanding.png">
 +
</figure>
 +
        <p>We went beyond the lab and reached out to experts to better understand current technological and safety issues in order to enhance the design of our project.</p><p> Further, we         
 +
        introduced our project and the field of synthetic biology to the general public and together explored issues related to safety, ethics and sustainability.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Human_Practices" class="more">HUMAN PRACTICES</a></p>
 +
    </div>
 +
</section>
 +
 +
 +
<section>
 +
    <div class="team">
 +
<figure class="team">
 +
    <img src="https://static.igem.org/mediawiki/2017/e/ec/T--ETH_Zurich--teamlanding.png">
 +
</figure>
 +
    <h1>TEAM</h1>
 +
        <p>We are an interdisciplinary team of eight master students of ETH Zürich who compete in the iGEM championship against hundreds of other teams from all over the world.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Team" class="more">TEAM</a></p>
 +
    </div>
 +
</section>
 +
 +
 +
</main>
  
 
<script>
 
<script>
Line 81: Line 175:
 
         $('a[href*=#]').on('click', function(e) {
 
         $('a[href*=#]').on('click', function(e) {
 
             e.preventDefault();
 
             e.preventDefault();
             $('html, body').animate({ scrollTop: $($(this).attr('href')).offset().top}, 500, 'linear');
+
             $('html, body').animate({ scrollTop: $($(this).attr('href')).offset().top}, 600, 'linear');
 
             });
 
             });
 
         });
 
         });
 
</script>
 
</script>
 +
  
  
 
</html>
 
</html>
 
{{ETH_Zurich/Footer_N}}
 
{{ETH_Zurich/Footer_N}}

Latest revision as of 14:06, 14 December 2017

WHY

Cancer kills over 8 million people every year. That's as much as the entire population of Switzerland!

We need more specific therapies because current approaches result in many side-effects. That's why we invented CATE, the first all-in-one living cancer therapeutic with an integrated two-step safety mechanism.

A living cure to a living disease!


BACKGROUND



VISION

To tackle the challenge of treating cancer, we decided to look beyond classical approaches and from the point of view of a synthetic biologist.

Our search led us to the concept of bacterial cancer therapy.


STORY OF CATE

 

CATE consists of the non-pathogenic bacterium E. coli Nissle that has the intrinsic ability to home preferentially in tumors.

It features two safety checkpoint mechanisms to ensure only tumor cells are damaged.

CATE is administered intravenously, travels through the blood and colonizes tumors. When enough bacteria have accumulated in the tumor, they make themselves visible and start preparing the cytotoxic payload.

After imaging the tumor with MRI, the doctor can then activate the release of the cancer-killing payload.


CATE IN ACTION

 



To achieve all these novel functions, we designed a genetic circuit that is distributed over two synthetic DNA sequences.

All functions were tested and optimized to make the resulting circuit as safe and well-characterized as possible.


CIRCUIT


ENGINEERING

We increased the understanding of the system's underlying mathematics by simulating its behavior with our models.

The models were then used to define important questions to clarify in experiments and develop efficient experimental and genetic design strategies.


DRY LAB


Experimentally, we collected data to support and refine our models and to show that our system works.


WET LAB

ACHIEVEMENTS

We could experimentally confirm the predictions of the models. After testing every function individually, we combined them one after the other in milestone experiments to show the system in action.

We created and characterized new BioBrick parts as a contribution for the synthetic biology community.


ACHIEVEMENTS

HUMAN PRACTICES

We went beyond the lab and reached out to experts to better understand current technological and safety issues in order to enhance the design of our project.

Further, we introduced our project and the field of synthetic biology to the general public and together explored issues related to safety, ethics and sustainability.


HUMAN PRACTICES

TEAM

We are an interdisciplinary team of eight master students of ETH Zürich who compete in the iGEM championship against hundreds of other teams from all over the world.


TEAM