Difference between revisions of "Team:ETH Zurich"

 
(184 intermediate revisions by 6 users not shown)
Line 6: Line 6:
 
{{ETH_Zurich/Header_N}}
 
{{ETH_Zurich/Header_N}}
 
<html>
 
<html>
 +
  
 
<main>
 
<main>
  
 
+
<div class="banner">
<figure class="fig-nonfloat" id="banner">
+
<figure class="banner" id="banner">
 
     <img src="https://static.igem.org/mediawiki/2017/c/c3/T--ETH_Zurich--Banner.png" alt="CATE" />
 
     <img src="https://static.igem.org/mediawiki/2017/c/c3/T--ETH_Zurich--Banner.png" alt="CATE" />
 
</figure>
 
</figure>
  
<a class="scroll-down-button" href="#start">
+
 
 +
<figure class="scroll">
 +
<a class="scroll-down-button" href="#scrollstart">
 
     <img src="https://static.igem.org/mediawiki/2017/1/14/T--ETH_Zurich--Scroll.png">
 
     <img src="https://static.igem.org/mediawiki/2017/1/14/T--ETH_Zurich--Scroll.png">
 
</a>
 
</a>
 +
<figure>
 +
</div>
  
 +
<section id="scrollstart"></section>
  
 
<section id="start" class="step">
 
<section id="start" class="step">
 
     <div class="why">
 
     <div class="why">
        <!--<h1> WHY</h1>-->
+
    <h1>WHY</h1>
         <p>Cancer kills over 8 million people every year. That's the entire population of Switzerland!</p>
+
         <p>Cancer kills over 8 million people every year. That's as much as the entire population of Switzerland!</p>
         <p>We need more specific therapies because current approaches result in many side-effects. That's why we invented CATE, the first all-in-one living cancer therapeutic with an  
+
         <p>We need more specific therapies because current approaches result in many side-effects. That's why we invented <span title="Came close to being FUSBa (<yyyeaah no ;))">CATE</span>, the first all-in-one living cancer therapeutic with an integrated two-step safety mechanism.
        integrated two-step safety mechanism.
+
 
         <p>A living cure to a living disease!</p>
 
         <p>A living cure to a living disease!</p>
         <p><a href="/Team:ETH_Zurich/Background" class="more">Why</a></p>
+
        <br>
 +
         <p><a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more"> BACKGROUND</a></p>
 
     </div>
 
     </div>
 
</section>
 
</section>
  
  
<section id="second" class="step invert">
+
 
<figure class="step">
+
<section id="second" class="step">
 +
    <div class="vision">
 +
<figure class="EcN">
 
         <img src="https://static.igem.org/mediawiki/2017/0/02/T--ETH_Zurich--Ec.png">
 
         <img src="https://static.igem.org/mediawiki/2017/0/02/T--ETH_Zurich--Ec.png">
    </figure>
+
</figure>
    <div>
+
        <!--<h1>Vision</h1>-->
+
 
<br>
 
<br>
 
<br>
 
<br>
        <p>CATE consists of the non-pathogenic bacterium <span class="bacterium">E. coli</span> Nissle that has the intrinsic ability to home preferentially in tumors. It features two
+
    <h1>VISION</h1>
          safety checkpoint mechanisms to ensure only tumor cells are damaged.</p>
+
        <p>To tackle the challenge of treating cancer, we decided to look beyond classical approaches and from the point of view of a synthetic biologist. </p>
         <p>We are engineering <span class="bacterium">E. coli</span> Nissle to carry a MRI contrast and a cytotoxic agent so it can deliver both components to tumor sites.</p>
+
         <p>Our search led us to the concept of bacterial cancer therapy.</p>
         <p> <a href="/Team:ETH_Zurich/Description" class="more">Vision</a></p>
+
        <br>
 +
         <p><a href="https://2017.igem.org/Team:ETH_Zurich/Description" class="more">STORY OF CATE</a></p>
 
     </div>
 
     </div>
 +
 
</section>
 
</section>
  
<br>
 
<br>
 
<br>     
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>     
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>     
 
<br>
 
<br>
 
<br>
 
  
<section id="third" class="step">
 
    <!--<h1>Treatment</h1>--> 
 
<figure class="patient">
 
<img src="https://static.igem.org/mediawiki/2017/b/b7/T--ETH_Zurich--MRIpatient.gif">
 
</figure>
 
  
 +
<div class="space">
 +
  &nbsp;
 +
</div>
 +
 +
 +
<section id="third" class="step">
 
     <div>
 
     <div>
         <p>CATE is administered intravenously, travels through the blood and colonizes tumors. If enough bacteria have accumulated in the tumor, they make themselves visible and  
+
        <p>CATE consists of the non-pathogenic bacterium <span class="bacterium">E. coli</span> Nissle that has the intrinsic ability to home preferentially in tumors.</p>
       start preparing the cytotoxic payload. After the doctor has imaged the colonized tumor site with MRI, the release of the cancer-killing payload is activated in the required area. </p>
+
        <p>It features two safety checkpoint mechanisms to ensure only tumor cells are damaged.</p>
         <p><a href="/Team:ETH_Zurich/#" class="more">Treatment</a></p>
+
         <p>CATE is administered intravenously, travels through the blood and colonizes tumors. When enough bacteria have accumulated in the tumor, they make themselves visible and  
 +
       start preparing the cytotoxic payload.</p>
 +
        <p> After imaging the tumor with MRI, the doctor can then activate the release of the cancer-killing payload. </p>
 +
        <br>
 +
         <p><a href="https://2017.igem.org/Team:ETH_Zurich/Applied_Design" class="more">CATE IN ACTION</a></p>
 
     </div>
 
     </div>
 +
 +
 +
<figure class="process">
 +
  <img src="https://static.igem.org/mediawiki/2017/c/cf/T--ETH_Zurich--process.png">
 +
</figure>
 
</section>
 
</section>
  
<br>  
+
 
 +
 
 +
<div class="space">
 +
  &nbsp;
 +
</div>
 +
 
 +
<section id="fourth" class="step">
 +
<div class="circuit">
 
<br>
 
<br>
<br>
 
 
<br>
 
<br>
 
<br>
 
<br>
<br>
+
<figure class="andgate">
<br>
+
  <img src="https://static.igem.org/mediawiki/2017/8/8c/T--ETH_Zurich--ANDgate.png">
 
+
</figure>
<section id="fourth" class="step">
+
    <!--<h1>Circuit</h1>-->
+
 
     <div>
 
     <div>
         <p>To achieve all these novel functions, we designed a genetic circuit that is distributed over two de novo synthesized DNA molecules. All functions were tested and optimized to make the resulting circuit as safe and well characterized as possible.</p>
+
 
 +
         <p>To achieve all these novel functions, we designed a genetic circuit that is distributed over two synthetic DNA sequences.</p>
 +
        <p> All functions were tested and optimized to make the resulting circuit as safe and well-characterized as possible.</p>
 +
        <br>
 +
      <p><a href="https://2017.igem.org/Team:ETH_Zurich/Circuit" class="more">CIRCUIT</a></p>
 
     </div>
 
     </div>
    <p><a href="/Team:ETH_Zurich/Circuit" class="more">Circuit</a></p>
 
 
</section>
 
</section>
  
<br>
 
 
<section id="fifth" class="break">
 
<figure>
 
        <img src="https://static.igem.org/mediawiki/2017/8/8c/T--ETH_Zurich--ANDgate.png">
 
    </figure>
 
  
 +
<section id="fifth" class="step">
 +
<div class="drylab">
 +
<figure class="drylab">
 +
  <img src="https://static.igem.org/mediawiki/2017/0/0b/T--ETH_Zurich--dry_lab.png">
 +
</figure>
 
<br>
 
<br>
 +
<h1>ENGINEERING</h1>
 +
        <p>We increased the understanding of the system's underlying mathematics by simulating its behavior with our models.</p><p> The models were then used to define important questions to clarify in experiments and develop efficient experimental and genetic design strategies.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Model" class="more">DRY LAB</a></p>
 +
  </div>
 +
</section>
 +
  
 
<section>
 
<section>
     <!--<h1>Engineering</h1>-->
+
     <div class="wetlab">
    <div>
+
<figure class="wetlab">
        <p>We increased the understanding of the systems underlying mathematics by simulating the functions with models. The models were also used to define important questions to
+
  <img src="https://static.igem.org/mediawiki/2017/9/95/T--ETH_Zurich--wetlab.png">
        clarify in experiments.</p>
+
</figure>
 +
<br>
 
         <p>Experimentally, we collected data to support and refine our models and to show that our system works.</p>
 
         <p>Experimentally, we collected data to support and refine our models and to show that our system works.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Experiments" class="more">WET LAB</a></p>
 
     </div>
 
     </div>
    <!-- NOTE: We need a /Dry_Lab maybe
 
    <a href="/Team:ETH_Zurich/Applied_Design" class="more">Treatment</a>
 
    -->
 
    <p><a href="/Team:ETH_Zurich/Engineering" class="more">Engineering</a></p>
 
 
</section>
 
</section>
 +
  
 
<section>
 
<section>
     <!--<h1>Achievements</h1>-->
+
     <div class="goals">
     <div>
+
<figure class="goals">
         <p>We worked goal oriented and could experimentally confirm the predictions of the models. After testing every function individually, we combined them one after the other in milestone experiments to show the system in action. We created and characterized new BioBrick parts that are important for the iGEM competition and are freely for the future iGEM teams.</p>
+
    <img src="https://static.igem.org/mediawiki/2017/8/83/T--ETH_Zurich--achievementslanding.png">
 +
</figure>
 +
     <h1>ACHIEVEMENTS</h1>
 +
         <p>We could experimentally confirm the predictions of the models. After testing every function individually, we combined them one after the other in milestone experiments to show the system in action.</p> <p> We created and characterized new BioBrick parts as a contribution for the synthetic biology community.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Results" class="more">ACHIEVEMENTS</a></p>
 
     </div>
 
     </div>
    <p><a href="/Team:ETH_Zurich/Achievements" class="more">Achievements</a></p>
 
 
</section>
 
</section>
 +
  
 
<section>
 
<section>
    <!--<h1>Human Practices</h1>-->
+
  <div class="HP">
    <div>
+
    <h1>HUMAN PRACTICES</h1>
         <p>We went beyond the lab and reached out to experts to better understand current technological and safety issues in order to enhance the design of our project. Further, we introduced our project and the field of synthetic biology to the general public and together explored issues related to safety, ethics and sustainability.</p>
+
<figure class="HP">
 +
    <img src="https://static.igem.org/mediawiki/2017/4/4a/T--ETH_Zurich--HPlanding.png">
 +
</figure>
 +
         <p>We went beyond the lab and reached out to experts to better understand current technological and safety issues in order to enhance the design of our project.</p><p> Further, we        
 +
        introduced our project and the field of synthetic biology to the general public and together explored issues related to safety, ethics and sustainability.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Human_Practices" class="more">HUMAN PRACTICES</a></p>
 
     </div>
 
     </div>
    <p><a href="/Team:ETH_Zurich/Human_Practices" class="more">Human Practices</a></p>
 
 
</section>
 
</section>
 +
  
 
<section>
 
<section>
     <!--<h1>Team</h1>-->
+
     <div class="team">
    <div>
+
<figure class="team">
 +
    <img src="https://static.igem.org/mediawiki/2017/e/ec/T--ETH_Zurich--teamlanding.png">
 +
</figure>
 +
    <h1>TEAM</h1>
 
         <p>We are an interdisciplinary team of eight master students of ETH Zürich who compete in the iGEM championship against hundreds of other teams from all over the world.</p>
 
         <p>We are an interdisciplinary team of eight master students of ETH Zürich who compete in the iGEM championship against hundreds of other teams from all over the world.</p>
 +
        <br>
 +
        <p><a href="https://2017.igem.org/Team:ETH_Zurich/Team" class="more">TEAM</a></p>
 
     </div>
 
     </div>
    <p><a href="/Team:ETH_Zurich/Team" class="more">Team</a></p>
 
 
</section>
 
</section>
 +
  
 
</main>
 
</main>
Line 146: Line 175:
 
         $('a[href*=#]').on('click', function(e) {
 
         $('a[href*=#]').on('click', function(e) {
 
             e.preventDefault();
 
             e.preventDefault();
             $('html, body').animate({ scrollTop: $($(this).attr('href')).offset().top}, 500, 'linear');
+
             $('html, body').animate({ scrollTop: $($(this).attr('href')).offset().top}, 600, 'linear');
 
             });
 
             });
 
         });
 
         });
 
</script>
 
</script>
  
</html>
 
  
  
 +
</html>
 
{{ETH_Zurich/Footer_N}}
 
{{ETH_Zurich/Footer_N}}

Latest revision as of 14:06, 14 December 2017

WHY

Cancer kills over 8 million people every year. That's as much as the entire population of Switzerland!

We need more specific therapies because current approaches result in many side-effects. That's why we invented CATE, the first all-in-one living cancer therapeutic with an integrated two-step safety mechanism.

A living cure to a living disease!


BACKGROUND



VISION

To tackle the challenge of treating cancer, we decided to look beyond classical approaches and from the point of view of a synthetic biologist.

Our search led us to the concept of bacterial cancer therapy.


STORY OF CATE

 

CATE consists of the non-pathogenic bacterium E. coli Nissle that has the intrinsic ability to home preferentially in tumors.

It features two safety checkpoint mechanisms to ensure only tumor cells are damaged.

CATE is administered intravenously, travels through the blood and colonizes tumors. When enough bacteria have accumulated in the tumor, they make themselves visible and start preparing the cytotoxic payload.

After imaging the tumor with MRI, the doctor can then activate the release of the cancer-killing payload.


CATE IN ACTION

 



To achieve all these novel functions, we designed a genetic circuit that is distributed over two synthetic DNA sequences.

All functions were tested and optimized to make the resulting circuit as safe and well-characterized as possible.


CIRCUIT


ENGINEERING

We increased the understanding of the system's underlying mathematics by simulating its behavior with our models.

The models were then used to define important questions to clarify in experiments and develop efficient experimental and genetic design strategies.


DRY LAB


Experimentally, we collected data to support and refine our models and to show that our system works.


WET LAB

ACHIEVEMENTS

We could experimentally confirm the predictions of the models. After testing every function individually, we combined them one after the other in milestone experiments to show the system in action.

We created and characterized new BioBrick parts as a contribution for the synthetic biology community.


ACHIEVEMENTS

HUMAN PRACTICES

We went beyond the lab and reached out to experts to better understand current technological and safety issues in order to enhance the design of our project.

Further, we introduced our project and the field of synthetic biology to the general public and together explored issues related to safety, ethics and sustainability.


HUMAN PRACTICES

TEAM

We are an interdisciplinary team of eight master students of ETH Zürich who compete in the iGEM championship against hundreds of other teams from all over the world.


TEAM