Difference between revisions of "Team:Kent/Experiments"

 
(21 intermediate revisions by the same user not shown)
Line 55: Line 55:
 
         #navdiv h1 img {
 
         #navdiv h1 img {
 
         width:150px;
 
         width:150px;
margin-top:-50px;
 
 
         }
 
         }
  
 
#navdiv h1 {
 
#navdiv h1 {
 
line-height: 150px;
 
line-height: 150px;
 
+
margin-top:-25px;
 
}
 
}
  
Line 69: Line 68:
 
margin:0;
 
margin:0;
 
padding:0;
 
padding:0;
                }
+
}
  
 
         #navdiv ul a{
 
         #navdiv ul a{
 
         text-decoration: none;
 
         text-decoration: none;
 
         color: #FFFFFF;
 
         color: #FFFFFF;
float:center;
 
 
         }
 
         }
  
Line 304: Line 302:
  
  
.line-separator{
+
.lineSeparator{
height:1px;
+
height:3px;
 
background:#89d875;
 
background:#89d875;
  
 
}
 
}
 +
.TableBox{
 +
width:100%;
 +
text-align:center;}
 +
 +
#EnzymeTable{
 +
width:50%;
 +
display:inline-block;}
 +
 +
#PCR1,#PCR2{
 +
width:50%;
 +
display:inline-block;
 +
}
 +
#PCR3{
 +
width:30%;
 +
display:inline-block;
 +
}
 +
 +
  
 
         #foot ul{
 
         #foot ul{
Line 392: Line 408:
 
     border-color: #89d875;
 
     border-color: #89d875;
 
   outline: none;
 
   outline: none;
 
 
opacity:0.8;
 
opacity:0.8;
 
   background-color: #455057;
 
   background-color: #455057;
Line 402: Line 417:
  
 
#ScrollUp:hover {
 
#ScrollUp:hover {
   background-color: #28AAA1;
+
   background-color: #89d875;
 
}
 
}
 
         #foot ul li span:hover .fa
 
         #foot ul li span:hover .fa
Line 422: Line 437:
  
 
#sponsors{
 
#sponsors{
padding-top:50px;
+
padding-top:100px;
 
text-align:center;
 
text-align:center;
 
margin-left:50px;
 
margin-left:50px;
Line 452: Line 467:
 
                     <ul class="drop-menu menu-1">
 
                     <ul class="drop-menu menu-1">
 
                         <a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a>
<a href="https://2017.igem.org/Team:Kent/Design"><li> Design </li></a>
+
<a href="https://2017.igem.org/Team:Kent/Model"><li>Modelling</li></a>
 
                       <a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a>
 
                       <a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Model"><li>Modelling</li></a>
+
                          
<a href="https://2017.igem.org/Team:Kent/Demonstrate"><li>Demonstrate</li></a>
+
 
 
                     </ul>
 
                     </ul>
 
                 <li>
 
                 <li>
 
                     <a href="#">Parts</a>
 
                     <a href="#">Parts</a>
 
                     <ul class="drop-menu menu-2">
 
                     <ul class="drop-menu menu-2">
<a href="https://2017.igem.org/Team:Kent/Parts"> <li> Parts </li></a>
+
 
 
                         <a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Composite_Part"><li>Composite Parts</li></a>
+
                          
<a href = "https://2017.igem.org/Team:Kent/Part_Collection"><li> Part Collection </li></a>
+
  
 
                     </ul>
 
                     </ul>
Line 485: Line 499:
 
                     <ul class="drop-menu menu-2">
 
                     <ul class="drop-menu menu-2">
 
                         <a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Signs"><li>Hazard Signs</li></a>
+
                          
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
Line 867: Line 881:
 
</ul>
 
</ul>
 
<br>
 
<br>
<div class="line-separator"></div>
+
<div class="lineSeparator"></div>
 
<br>
 
<br>
 
Preparation of Competent Cells for Storage
 
Preparation of Competent Cells for Storage
Line 907: Line 921:
 
<input type="radio" name="droptext" id="cb15" />
 
<input type="radio" name="droptext" id="cb15" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb15">Calibration of OD 600 Reference Point</label>
+
<label class="hull-title" for="cb15">DNA Miniprep Kit (Qiagen)</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
 
<div class="hull-content">
 
<div class="hull-content">
LUDOX-S40 must be used as a single point reference with the aim to attain a
+
Method: (passive + our)
ratiometric conversion factor, which in turn will be used to transform absorbance
+
<ul><li>2 x 5 mL of our ampicillin resistant bacteria, containing the plasmid of interest and grown
data into standard OD 600 measurement.
+
overnight on LB medium, are centrifuged in falcon tubes at 4500 rpm for 6 minutes.</li>
<br>
+
<li>The supernatant is removed and the pelleted bacteria are resuspended in 250μL of P1 buffer
Standard 1 cm path length spectrophotometer readings are instrument dependent,
+
(containing 100 μg/mL RNase A). Thoroughly mix/ Vortex mix of the samples is required to
while plate readers possess a path length less than 1 cm and are volume dependent.
+
ensure full resuspension. The samples are transferred into Eppendorf tubes.</li>
<br>
+
<li>250 μL of P2 buffer is added to each sample and gently mixed by inverting the tube ca. 10 times.
Therefore, in this situation, there are 2 key objectives:
+
This lysis reaction should not exceed 5 minutes.</li>
<ul><li>Ratiometric conversion to transform Abs 600 measurements into OD 600
+
<li>350 μL of N3 buffer is pipetted to each sample, and gently but thoroughly mixed by inverting the
measurements</li>
+
tube ca. 10 times. The samples are then centrifuged in a table top centrifuge at 13.000 rpm for
<li> Accounting for instrument differences</li></ul>
+
10 minutes.</li>
<br>
+
<li>The supernatant contains our plasmid of interest, while the white pellet is cell debris. 800 μl of
Before starting the protocol, path length correction must be switched off. This is
+
the supernatant are pipetted into Qiagen Spin Columns.</li>
because scattering increases with longer wavelengths therefore adjustment is
+
<li>The columns are centrifuged for 60 seconds. The plasmids are retained in a silica mesh, while
confounded by scattering solutions such as dense cells. However, many plate
+
remaining substances flow through the column into a collection tube.</li>
readers have automatic path length correction which is based on volume
+
<li>The column is washed with 500 μL of PB buffer and centrifuged (13.000 rpm for 60 sec) to
adjustment that uses ratio of absorbance measurements at 900 + 950 nm.
+
remove any remaining nucleases which could interfere with further processing of the plasmids.</li>
LUDOX solution is only weakly scattering so will produce low absorbance values
+
<li>750 μL of PE buffer is added to each sample and centrifuged for 60 seconds to remove any
<br>
+
remaining wash buffer. The flow through is discarded and the spin column is placed into a fresh
Use same cuvettes, plates and volumes that are going to be used in cell based assays
+
Eppendorf tube.</li>
<br>
+
<li>To elute the bound plasmid DNA, 50 μL of EB buffer is added to the column. After letting the
Materials:
+
samples stand for ca. 2 minutes, each tube is centrifuged at high speed (13.000 rpm) for 60
<ul><li>1 mL 100% LUDOX</li>
+
seconds.</li>
<li>H 2 O</li>
+
<li>The spin column is discarded, the Eppendorf tubes now contain our desired plasmid DNA.</li></ul>
<li>96 well plate (black with flat, transparent/clear bottom)</li></ul>
+
<br>
+
Method
+
<ul><li>100 µl of LUDOX should be added into wells A1, B1, C1 and D2 (or 1mL into
+
cuvette)</li>
+
<li>100 µl of H 2 O should be added into wells A2, B2, C2 and D2</li>
+
<li>Measure absorbance 600nm of all samples in all standard measurement modes in instrument</li>
+
<li>Record data</li>
+
 
</div>
 
</div>
</section>
+
</section>
+
<input type="radio" name="droptext" id="acc-close" />
 
<input type="radio" name="droptext" id="cb16" />
 
<input type="radio" name="droptext" id="cb16" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb16">Production of Fluorescein stock solution</label>
+
<label class="hull-title" for="cb16">Enzyme Digest Protocol</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
 
<div class="hull-content">
 
<div class="hull-content">
<ul>
+
A restriction enzyme digestion is usually performed in a volume of 20μL with 0.2-1.5μg of substrate DNA and two-to tenfold excess of enzyme.
<li> Spin down the Fluorescein stock tube and ensure the pellet is at the tubes' bottom </li>
+
<li>Prepare 2x fluorescein stock solution (100 µM)<ul>
+
<li>Resuspend Fluorescein in 1mL 1xPBS</li>
+
<li>Ensure Fluorescein is properly dissolved<br>
+
After the resuspension, pipette up and down and examine the solution in
+
the tip (if particulates are visisble, continue to mix solution until they
+
disappear)</li></ul></li>
+
 
<br>
 
<br>
<li>Dilute the 2x Fluorescein stock solution<ul>
+
If a large volume of DNA or enzyme is used, abnormal results may occur
<li> With 1xPBS to make 1x fluorescein solution</li>
+
<br>
<li>With resulting concentration of fluorescein stock solution 50 µM
+
When pipetting the samples in the different lanes of the gel, the enzyme componentof the tube needs to make up 1μL.
(500 µL of 2x fluorescein in 500 µL 1x PBS to make 1 mL of 50 µM (1x)
+
<br>
fluorescein solution)</li></ul></li>
+
Method:
</ul>
+
1. The 5 lanes of the gel are as follows<ul>
 +
<li>Marker</li>
 +
<li>Control (with no cutting enzyme)</li>
 +
<li>1μL EcoR1</li>
 +
<li>1μL Pst1</li>
 +
<li>1μL EcoR1 and Pst1</li>
 +
2. Assemble the following components in a sterile tube:
 +
<br><br>
 +
<div class="TableBox">
 +
<img src="https://static.igem.org/mediawiki/2017/thumb/8/8d/T--Kent--EnzymeDigest.png/800px-T--Kent--EnzymeDigest.png" id="EnzymeTable">
 +
<br><br>
 +
</div>
 +
Note: Different lanes require different tubes to be made up
 +
3. Mix the solution gently by pipetting up and down
 +
4. Close the tube and centrifuge for a few seconds in a microcentrifuge
 +
5. Incubate at the specific enzyme’s optimum temperature (37 o C in this case)for 1-4 hours
 +
6. Add loading buffer to a 1 X final concentration and proceed to the gel analysis
 
</div>
 
</div>
 
</section>
 
</section>
Line 970: Line 985:
 
<input type="radio" name="droptext" id="cb17" />
 
<input type="radio" name="droptext" id="cb17" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb17">Fluorescein Fluorescence Standard Curve</label>
+
<label class="hull-title" for="cb17">PCR Protocol for Q5 High-Fidelity 2X Master Mix</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
<div class="hull-content">
+
<div class="hull-content">All reaction components should be assembled on ice then quickly transferred to a thermocycler that’s been preheated to the denaturation temperature (98oC)
A dilution series of Fluorescein in 4 replicates must be prepared where the
+
fluorescence is measured in a 96 well plate in standard mode on a plate reader. A
+
standard curve will be generated of fluorescence of fluorescein concentration. This
+
will be used to correct cell based readings to an equivalent fluorescein
+
concentration, which will then be converted into a GFP concentration.
+
 
<br>
 
<br>
 +
Components:
 +
All the components should be mixed prior to use
 +
<br><br>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/c/cd/T--Kent--PCR1.png" id="PCR1"></div>
 +
<br><br>
 +
Method:
 +
<ul>
 +
<li>Gently mix the reaction</li>
 +
<li>Collect all the liquid found at the bottom of the tube by a quick spin if needed</li>
 +
<li>Overlay the sample with mineral oil when using a PCR machine that doesn’t have a heated lid</li>
 +
<li>Transfer the PCR tubes to the PCR machine to begin thermocycling</li></ul>
 
<br>
 
<br>
Materials
+
Thermocycling conditions:
 +
<br><br>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/9/91/T--Kent--PCR2.png" id="PCR2"></div>
 +
<br><br>
 +
Annealing temperatures shouldn’t exceed 72 o C. You can use the NEB T m Calculator
 +
found on the New England BioLabs website to calculate temperatures needed and
 +
timings.
 
<br>
 
<br>
<ul><li>Fluorescein</li>
 
<li>10mL 1xPBS (Phosphate Buffered Saline)</li>
 
<li>96 well plate (black with flat, transparent/clear bottom)</li></ul>
 
 
<br>
 
<br>
Method
+
<div class="lineSeparator"></div>
<br>Serial dilutions need to be performed across columns 1-11
+
Column 12 must contain PBS buffer only
+
 
<br>
 
<br>
The plate will initially be setup fluorescein stock in column 1 and equal volume of1xPBS in columns 2-12
+
Guidelines
<ul><li> Add 100 µL of PBS into wells A2-A12, B2-B12, C2-C12 and D2-D12</li>
+
 
<li>Add 200 µL of Fluorescein 1x stock solution into A1, B1, C1 and D1</li>
+
Template
 +
<ul><li>A high quality, purified DNA template is preferred as it greatly improves PCR success. Recommended amounts of such a template are shown below for a 50uL reaction:</ul></li>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/thumb/f/f3/T--Kent--PCR3.png/800px-T--Kent--PCR3.png" id="PCR3"></div>
  
<li>Transfer 100 µL of Fluorescein stock solution from A1 into A2</li>
 
<li>Mix A2 by pipetting up and down 3x and transfer 100 µL into A3
 
Repeat the process for A3 into A4, A4 into A5, etc. until A11</li>
 
<li>Mix A11 by pipetting up and down 3x and transfer 100 µL into liquid waste</li>
 
<li>Repeat dilution series for rows B, C and D</li>
 
<li>Measure fluorescence of all samples in all standard measurement modes in
 
instrument</li>
 
<li>Record the data</li></ul>
 
 
<br>
 
<br>
Measurement notes
+
<br>
<ul><li>The plates can now be measured in the plate reader</li>
+
Primers
<li>Standard GFP settings must be used (same as those used when measuring the
+
<ul><li>Oligonucleotide primers should generally be 20-40 nucleotides long while having a GC content of 40-60%</li>
cells):<ul>
+
<li>Best results are seen when using each primer at a final concentration of 0.5uM in the reaction</li></ul>
<li>Excitation 485nm
+
 
<li>Emission 530/30
+
<br>
<li>Turn off path length correction</li></ul></li>
+
Mg2+ and additives
<li>Would be ideal to repeat measurements with different settings
+
<ul><li>The Q5 High-Fidelity Master Mix contains 2mM Mg++ when used at a 1X concentration, which is optimal for most PCR products</li></ul>
<ul><li>Generates series of standard curves to choose from</li></ul></li>
+
 
<li>Use number of settings that affect sensitivity (gain and/or slit width)
+
<br>
<ul><li>Also consider orbital averaging, top/bottom optics</li></ul></li>
+
Deoxynucleotides
 +
<ul><li>Final concentration of dNTPs is 200uM of each deoxynucleotide in the 1X final concentration</li>
 +
<li>Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and isn’t recommended for use with uracil-containing primers or templates</li></ul>
 +
 
 +
<br>
 +
Q5 High-Fidelity DNA Polymerase concentration
 +
<ul><li>Concentration in the Master Mix has been optimized for best results under a wide conditions range</li></ul>
 +
 
 +
<br>
 +
Denaturation
 +
<ul><li>Initial denaturation of 30 seconds occurs at 98oC, which is enough for most amplicons from pure DNA templates.</li>
 +
<li>Though longer denaturation times going up to 3 minutes can be used for templates that require it</li></ul>
 +
 
 +
<Br>
 +
Annealing
 +
<ul><li>Optimal annealing temperatures for this Master Mix tend to be higher than for other PCR polymerases</li>
 +
<li>Typically 10-30 second annealing steps should be used at 3oC above the Tm of the lower Tm primer</li>
 +
<li>Temperature gradients can also be used to optimize the annealing temperature for each primer pair<ul>
 +
<li>For higher Tm primer pairs, two-step cycling without a separate annealing step can be used</li></ul></li></ul>
 +
 
 +
<br>
 +
Extension
 +
<ul><li>Recommended extension temperature is 72oC
 +
<ul><li>With the recommended time being between 20-30 seconds per kb for complex, genomic samples.<li></ul><li>
 +
<li>The time can be reduced to 10 seconds per kb for simpler templates (plasmid, E.coli, etc.) or complex templates smaller than 1kb</li>
 +
<li>The extension time can be increased to 40 seconds per kb for cDNA or other long, complex templates if needed</li>
 +
<li>A final extension of 2 minutes at 72oC is recommended</li></ul>
 +
 
 +
 
 +
Cycle Number
 +
<ul><li>25-35 cycles yield sufficient products generally</li>
 +
<li>For genomic amplicons, 30-35 cycles are advised</li></ul>
 +
 
 +
<br>
 +
2-step PCR
 +
<ul><li>Used when primers have annealing temperatures exceeding or are equal to 72oC (≥ 72°C).</li>
 +
<li>This 2-step thermocycling protocol combines annealing and extension into one step</li></ul>
 +
 
 +
<br>
 +
Amplification of long products
 +
<ul><li>When amplifying products > 6kb, you can increase the extension time to 40-50 seconds per kb.</li></ul>
 +
 
 +
<br>
 +
PCR Product
 +
<ul><li>Products generated using this Master Mix have blunt ends</li>
 +
<li>If clonding is the next step then blunt-end cloning isn’t recommended</li>
 +
<li>If T/A-cloning is to be done, the DNA should be purified prior to A-addition, since the Q5 High-Fidelity DNA Polymerase will degrade any overhangs generated</li></ul>
  
 
</div>
 
</div>

Latest revision as of 03:52, 2 November 2017


Experiments & Protocols