Difference between revisions of "Team:NPU-China/Description"

(Prototype team page)
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{NPU-China}}
+
{{NPU-China/mmp}}
<html>
+
<html lang="en">
  
 +
<head>
 +
    <!-- Bootstrap Core CSS -->
 +
    <link href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet">
  
 +
    <!-- Custom CSS -->
 +
    <link href="https://2017.igem.org/Template:NPU-China/css?action=raw&ctype=text/css" rel="stylesheet">
  
<div class="column full_size">
+
    <!-- Custom Fonts -->
<h1>Description</h1>
+
    <link href="https://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
  
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
    <!-- jQuery -->
 +
    <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
  
 +
    <!-- Bootstrap Core JavaScript -->
 +
    <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
  
<h5>What should this page contain?</h5>
+
    <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<ul>
+
    <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<li> A clear and concise description of your project.</li>
+
    <!--[if lt IE 9]>
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
        <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<li>References and sources to document your research.</li>
+
        <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<li>Use illustrations and other visual resources to explain your project.</li>
+
    <![endif]-->
</ul>
+
    <style>
 +
    </style>
 +
</head>
  
  
</div>
+
<body>
  
<div class="column full_size" >
+
    <!-- Navigation -->
 +
    <nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 +
        <div class="container">
 +
            <div class="navbar-header">
 +
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
                    <span class="sr-only">Toggle navigation</span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                </button>
 +
                <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
 +
                    <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
 +
                </a>
 +
            </div>
 +
            <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 +
                <ul class="nav navbar-nav navbar-right">
 +
                    <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China">Home</a>
 +
                    </li>
 +
                    <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
 +
                            <b class="caret"></b>
 +
                        </a>
 +
                        <ul class="dropdown-menu">
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
 +
                            </li>
 +
                        </ul>
 +
                    </li>
 +
                    <li class="dropdown active">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 +
                            <b class="caret"></b>
 +
                        </a>
 +
                        <ul class="dropdown-menu">
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
 +
                            </li>
 +
                        </ul>
 +
                    </li>
 +
                    <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
 +
                            <b class="caret"></b>
 +
                        </a>
 +
                        <ul class="dropdown-menu">
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
 +
                            </li>
 +
                        </ul>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 +
                    </li>
 +
                    <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
 +
                            <b class="caret"></b>
 +
                        </a>
 +
                        <ul class="dropdown-menu">
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
 +
                            </li>
 +
                        </ul>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
 +
                    </li>
 +
                    <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
 +
                    </li>
  
<h5>Advice on writing your Project Description</h5>
+
                    <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
 +
                            <b class="caret"></b>
 +
                        </a>
 +
                        <ul class="dropdown-menu">
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
 +
                            </li>
 +
                            <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
 +
                            </li>
 +
                        </ul>
 +
                    </li>
 +
                </ul>
 +
            </div>
 +
        </div>
 +
    </nav>
  
<p>
+
    <!-- Page Content -->
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.  
+
    <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
</p>
+
        <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/97/%E9%A2%98%E7%9B%AE%E9%80%9A%E6%A0%8Fdescription.jpg">
 +
        <div class="container" style="padding-top:70px">
 +
            <div class="row">
 +
                <div class="col-md-12">
 +
                    <h4>This year, we focus on an important chemical organic synthesis raw material – acrylic acid. We hope to
 +
                        build an cell factory to achieve "all green" production of acrylic acid efficiently, so
 +
                        we choose glycerol as the raw material for microbial cell factories to produce bulk chemical products.
 +
                        Glycerol has the advantage of being cheap and environmentally-friendly, and allaying the pressure on
 +
                        the by-product waste in the production of biodiesel. In addition, compared to glucose, xylose and
 +
                        other carbohydrate substrates, glycerol metabolism can produce higher reducing power.
 +
                        <br><br> Complex synthetic pathway, vague synthetic mechanism and low efficiency of the synthesis, are the
 +
                        current shortcomings of acrylic biosynthesis method.How to come up with a short and efficient acrylic biosynthetic pathway to build a highly efficient acrylic acid biosynthetic factory is the key to success!  This is also
 +
                        the entry point for our project this year.
 +
                        <br><br>
 +
<center><img src="https://static.igem.org/mediawiki/2017/5/59/NPU-formerAA.png" class="img-responsive"></center>
 +
<center><h4>Overview of existing and hypothetical metabolic pathways for biosynthesis of acrylate from sugars. </h4></center>
  
<p>
+
<br> In the previous experiments, we had further demonstrated the new function of ceaS2 enzyme, which can catalyze the production of acrylic acid with DHAP (dihydroxy acetone phosphate) or G3P (glyceraldehyde 3-phosphate) as substrate. Because acrylic acid is not the main product of ceaS2 enzyme, the catalytic
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
+
                        effect of wild-type ceaS2 enzyme is very weak and the yield of acrylic acid is only 1mg / L. So we
</p>
+
                        carried out engineering modification of this enzyme to improve the catalytic effect of the core part.
 +
                        We used the AEMD (Auto Enzyme Mutation Design) platform to identify mutational sites and screened
 +
                        for high catalytic efficiency by HPLC (High Performance Liquid Chromatography) and HTS (High throughput screening) of the ceaS2 mutant.
 +
                        <br><br> In the selection of the chassis organisms, we chose E. coli which is a kind of classic chassis organism
 +
                        in prokaryote and Saccharomyces cerevisiae which is the most easily manipulated chassis organism
 +
                        in eukaryotes.
  
</div>
+
<center><img src="https://static.igem.org/mediawiki/2017/8/85/System.png" class="img-responsive"></center>
 +
<center><h4>  E.coli -  V.S  -  S.cerevisiae </h4></center>
  
 +
                        <br><br> The GDC (GlyDH-DAK-ceaS2) pathway was designed in order to improve the ability of chassis cells
 +
                        to convert glycerol to DHAP and finally synthesize acrylic acid. We also added NOX (NADH dehydrogenase)
 +
                        and CAT (Catalase) to this pathway to provide the required reducing power for GlyDH by two layers
 +
                        of substrate circulation. Ultimately, GNCDC (GlyDH-NOX-CAT-DAK-ceaS2) is our desired new biosynthetic
 +
                        pathway of acrylic acid.
 +
                        <br><br> In order to determine the effect of the new route on the yield of acrylic acid before the wet experiment
 +
                        and to analyze the stability and robustness of the new route, we asked SCAU-China to help us did
 +
                        the work of metabolic flow modeling. We analyzed the changes of carbon flux of the two key intermediates,
 +
                        DHAP and G3P, before and after joining the new pathway. The modeling results show that the new pathway
 +
                        can increase the carbon flow of DHAP and G3P, thereby contributing to the increase in the production
 +
                        of acrylic acid.
  
<div class="column half_size" >
+
              <div class="col-md-12" style="padding-top:30px">
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/1/10/%E5%A4%A7%E8%82%A0%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive">
 +
                      <center> <h4> the GNCDC(GlyDH-NOX-CAT-DAK-ceaS2) pathway for E.coli </h4></center>
 +
                    </div>
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/b/b0/%E9%85%B5%E6%AF%8D%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive">
 +
                      <center>  <h4>  the GNDC(GlyDH-NOX-DAK-ceaS2) pathway for S.cerevisiae </h4></center>
 +
                    </div>
 +
                </div>
 +
</h4>
 +
<h4>
 +
                        <br><br> We used whole cell catalysis to carry out the initial acrylic acid synthesis "fermentation" process.
 +
                        The advantage of whole cell catalysis is that the intracellular complete multi-enzyme system can
 +
                        achieve the cascade reaction of enzyme, so as to make up the deficiency of cascade reaction in reaction
 +
                        which only uses pure enzyme and improves the catalytic efficiency. While eliminating the complex process
 +
                        in enzyme purification, it is easier to carry out the reaction and lower production costs.
 +
                        <br><br> We optimized the reaction process, selected the carbon source, buffer, temperature, pH, reaction
 +
                        time and other conditions to optimize the production process of the cell factory.
 +
<center><img src="https://static.igem.org/mediawiki/2017/6/67/Production2.png" class="img-responsive"></center>
 +
                        <br><br> We also made Hardware<a href="https://2017.igem.org/Team:NPU-China/Hardware">(Click Here)</a> to simulate the industrial production process of acrylic acid!
  
<h5>References</h5>
+
</h4>
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
+
  
</div>
+
                </div>
  
 +
            </div>
 +
            <!-- Blog Post Row -->
  
<div class="column half_size" >
 
<h5>Inspiration</h5>
 
<p>See how other teams have described and presented their projects: </p>
 
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
 
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
 
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
 
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
 
</ul>
 
</div>
 
  
 +
        </div>
 +
        <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 +
    </div>
 +
    </div>
  
 +
</body>
  
 
</html>
 
</html>

Latest revision as of 03:34, 2 November 2017

This year, we focus on an important chemical organic synthesis raw material – acrylic acid. We hope to build an cell factory to achieve "all green" production of acrylic acid efficiently, so we choose glycerol as the raw material for microbial cell factories to produce bulk chemical products. Glycerol has the advantage of being cheap and environmentally-friendly, and allaying the pressure on the by-product waste in the production of biodiesel. In addition, compared to glucose, xylose and other carbohydrate substrates, glycerol metabolism can produce higher reducing power.

Complex synthetic pathway, vague synthetic mechanism and low efficiency of the synthesis, are the current shortcomings of acrylic biosynthesis method.How to come up with a short and efficient acrylic biosynthetic pathway to build a highly efficient acrylic acid biosynthetic factory is the key to success! This is also the entry point for our project this year.

Overview of existing and hypothetical metabolic pathways for biosynthesis of acrylate from sugars.


In the previous experiments, we had further demonstrated the new function of ceaS2 enzyme, which can catalyze the production of acrylic acid with DHAP (dihydroxy acetone phosphate) or G3P (glyceraldehyde 3-phosphate) as substrate. Because acrylic acid is not the main product of ceaS2 enzyme, the catalytic effect of wild-type ceaS2 enzyme is very weak and the yield of acrylic acid is only 1mg / L. So we carried out engineering modification of this enzyme to improve the catalytic effect of the core part. We used the AEMD (Auto Enzyme Mutation Design) platform to identify mutational sites and screened for high catalytic efficiency by HPLC (High Performance Liquid Chromatography) and HTS (High throughput screening) of the ceaS2 mutant.

In the selection of the chassis organisms, we chose E. coli which is a kind of classic chassis organism in prokaryote and Saccharomyces cerevisiae which is the most easily manipulated chassis organism in eukaryotes.

E.coli - V.S - S.cerevisiae



The GDC (GlyDH-DAK-ceaS2) pathway was designed in order to improve the ability of chassis cells to convert glycerol to DHAP and finally synthesize acrylic acid. We also added NOX (NADH dehydrogenase) and CAT (Catalase) to this pathway to provide the required reducing power for GlyDH by two layers of substrate circulation. Ultimately, GNCDC (GlyDH-NOX-CAT-DAK-ceaS2) is our desired new biosynthetic pathway of acrylic acid.

In order to determine the effect of the new route on the yield of acrylic acid before the wet experiment and to analyze the stability and robustness of the new route, we asked SCAU-China to help us did the work of metabolic flow modeling. We analyzed the changes of carbon flux of the two key intermediates, DHAP and G3P, before and after joining the new pathway. The modeling results show that the new pathway can increase the carbon flow of DHAP and G3P, thereby contributing to the increase in the production of acrylic acid.

the GNCDC(GlyDH-NOX-CAT-DAK-ceaS2) pathway for E.coli

the GNDC(GlyDH-NOX-DAK-ceaS2) pathway for S.cerevisiae



We used whole cell catalysis to carry out the initial acrylic acid synthesis "fermentation" process. The advantage of whole cell catalysis is that the intracellular complete multi-enzyme system can achieve the cascade reaction of enzyme, so as to make up the deficiency of cascade reaction in reaction which only uses pure enzyme and improves the catalytic efficiency. While eliminating the complex process in enzyme purification, it is easier to carry out the reaction and lower production costs.

We optimized the reaction process, selected the carbon source, buffer, temperature, pH, reaction time and other conditions to optimize the production process of the cell factory.


We also made Hardware(Click Here) to simulate the industrial production process of acrylic acid!