Difference between revisions of "Team:NPU-China/Design"

Line 25: Line 25:
 
     <![endif]-->
 
     <![endif]-->
 
     <style>
 
     <style>
 +
        .nav-pills>li.active>a,
 +
        .nav-pills>li.active>a:hover,
 +
        .nav-pills>li.active>a:focus {
 +
            color: #fff;
 +
            background-color: #A0A0A0;
 +
        }
 +
 +
        .list-group-item.active>.badge,
 +
        .nav-pills>.active>a>.badge {
 +
            color: #A0A0A0;
 +
            background-color: #fff;
 +
        }
 
     </style>
 
     </style>
 
</head>
 
</head>
Line 147: Line 159:
 
     <!-- Page Content -->
 
     <!-- Page Content -->
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/4/46/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fdesign.jpg">
+
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/97/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fmodel.jpg">
 
         <div class="container" style="padding-top:70px">
 
         <div class="container" style="padding-top:70px">
 
             <div class="row">
 
             <div class="row">
                 <div class="col-md-12">
+
                 <div class="col-md-12" style="padding-top:70px">
                     <h3>Introduction</h3>
+
                     <ul id="myTab" class="nav nav-pills nav-justified" style="margin:0; padding:0; ">
                    <h4>The essence of biochemical synthesis is the catalytic reaction with enzyme as the catalyst. Creating
+
                        <li class="active">
                        new biochemical reactions is an important research direction of synthetic biology.
+
                            <a href="#service-one" data-toggle="tab">
                        <br> ceaS2, whose full name is N2-(2-carboxyethyl)arginine synthase2, is a kind of enzyme in Streptomyces
+
                                <h2>Metabolic flow modeling</h2>
                        clavuligerus. The mentor of our team, Jiang Huifeng, has confirmed the new functions of ceaS2
+
                            </a>
                        <br> with the help of TPP (Thiamine pyrophosphate) and magnesium ions, ceaS2 enzyme can catalyze the
+
                         </li>
                        production of acrylic acid with DHAP (dihydroxy acetone phosphate) or G3P (glyceraldehyde 3-phosphate)
+
                         <li class="">
                        as substrate.
+
                            <a href="#service-two" data-toggle="tab">
                        <br> (图)
+
                                <h2>AEMD</h2>
                        <br> Cell factory of acrylic acid (GAACF) 1.0:
+
                            </a>
                        <br> DHAP and G3P are the central metabolic secondary products which can be easily found in various organisms.
+
                         </li>
                        They are the carbon flow nodes that must be passed in the glycerol metabolic pathway in most organisms.
+
                     </ul>
                        With ceaS2 enzyme as the core part, it is possible to create a new pathway to synthesize acrylic
+
                     <div id="myTabContent" class="tab-content">
                        acid from glycerol metabolic pathway in organisms and construct a cell factory with high yield of
+
                        <div class="tab-pane fade active in" id="service-one">
                        acrylic acid.
+
                            <h2 style="text-align:center">Introduction</h2>
                        <br> First, we took E. coli BL21 (DE3) as the chassis cells and constructed engineering bacteria carrying
+
                            <h4>This year our project is the introduction of acrylic synthetic routes in Escherichia coli or
                        the gene of ceaS2 enzyme with pET-28a plasmid as the vector. We constructed a new pathway to synthesize
+
                                Saccharomyces cerevisiae to produce acrylic acid.</h4>
                        acrylic acid from any carbon source by transforming ceaS2 directly into the chassis cells. This new
+
                        approach is the shortest compared to other pathways. Take the glycerol metabolic pathway of E. coli
+
                        as an example, we only need three enzymes to achieve the synthesis of acrylic acid from glycerol.
+
                        So this pathway is a more flexible and has more development prospects.
+
                         <br> 【E.coli图+路径图+质粒图】 Through the whole cell catalysis and HPLC (High Performance Liquid Chromatography),
+
                        the results show that the engineering bacteria can use glycerol as carbon source to produce acrylic
+
                        acid. However, the yield of the cell factory 1.0 is not high, only about 1mg / L.
+
                        <br> It is known that acrylic acid can not be metabolized in the cell, so we analyzed the possible reasons
+
                        as the following:
+
                         <br> 1. The activity and the catalytic efficiency of wild type ceaS2 is low.
+
                        <br> 2. The low carbon flow rate of glycerol metabolic pathway in E. coli leads to the low concentration
+
                        of DHAP and G3P.
+
                        <br> 3. Acrylic acid is toxic to the chassis cells.
+
                        <br> 4. The reaction conditions such as carbon source, pH, temperature and reaction time are not suitable.
+
                        <br> Based on the analyzing results, we have made improvements and built a new cell factory.
+
                        <br>
+
                         <br> Cell factory of acrylic acid (GAACF) 2.0:
+
                        <br> We built a new cell factory of acrylic acid through the four part: CO-PART, SYSTEM, PATHWAY, PRODUCTION!
+
                        <br>
+
                     </h4>
+
                     <div id="COREPART" style="padding-top:50px;margin-top:-50px;">
+
                        <h2 style="text-align:center">CORE PART</h2>
+
                        <h4>Acrylic acid is a byproduct of CEAS2 enzyme, the catalytic effect of wild type ceaS2 enzyme is very
+
                            weak, and acrylic acid production is only 1mg / L. So it is necessary to improve the catalytic
+
                            effect of this core factor, ceaS2 enzyme.
+
                            <br> The gene of ceaS2 enzyme consists of 1719 deoxynucleotides and the protein sequence consists
+
                            of 573 amino acids. We need to use bioinformatics to analyze and simulate, in order to help us
+
                            decide the correct proposal.
+
                            <br> We constructed ceaS2 enzyme mutants using the AEMD (Auto Enzyme Mutation Design) platform. We
+
                            constructed the ceaS2 wild-type sequence on pET-28a plasmid. We used pET-28a-ceaS2 plasmid as
+
                            a template to create point mutation, and then transformed the plasmid into BL21. Then, we did
+
                            the whole cell catalysis to get the products. Finally, we screened for ceaS2 mutants with high
+
                            catalytic efficiency by HPLC (High Performance Liquid Chromatography) (Learn more about HPLC!)and
+
                            HTS (High throughput screening) (Learn more about HTS!).
+
 
                             <br>
 
                             <br>
                        </h4>
+
                            <div class="col-md-12">
                    </div>
+
                                <div class="col-md-6">
                    【ceaS2酶结构图+5埃范围内活性中心示意图】
+
                                    <img src="https://static.igem.org/mediawiki/2017/2/21/%E5%A4%A7%E8%82%A0%E5%8E%9F%E5%A7%8B%E4%BB%A3%E8%B0%A2.png" class="img-responsive">
 +
                                    <h5 style="text-align:center"> Primitive metabolic path map in E.Coli</h5>
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/7/7b/%E9%85%B5%E6%AF%8D%E5%8E%9F%E5%A7%8B%E4%BB%A3%E8%B0%A2%E5%9B%BE.png" class="img-responsive">
 +
                                    <h5 style="text-align:center"> Primitive metabolic path map in S.Cerevisiae</h5>
 +
                                </div>
 +
                            </div>
 +
                           
 +
                            <h4>
 +
                                <br> We have a rational new design and transformation of the core enzyme ceaS2, at the same time,
 +
                                we also want to be optimized to improve the acrylic acid production in the metabolic flow.
 +
                                <br> We know that for Escherichia coli, the carbon flow rate of its original glycerol metabolic
 +
                                pathway may not be sufficient, and if the new glycerol metabolic pathway can be used to increase
 +
                                the carbon flow of DHAP or G3P, the substrate of the core enzyme ceaS2 can be increased Concentration
 +
                                to increase acrylic acid production.
 +
                                <br> Therefore, through the literature review, we found two enzymes which can achieve efficient
 +
                                conversion of glycerol to generate DHAP the same way.
 +
                                <br> In our new approach, Glycerol dehydrogenase (Gly DH) is capable of efficiently converting
 +
                                glycerol to 1,3-Dihydroxyacetone (DHA) and then phosphorylates DHA to DHAP via Dihydroxyacetone
 +
                                kinase (DAK).
 +
                            </h4>
 +
                            <br>
 +
                            <div class="col-md-12">
 +
                                <div class="col-md-6">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/1/10/%E5%A4%A7%E8%82%A0%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive">
 +
                                    <h5 style="text-align:center"> New route map in E.Coli</h5>
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/b/b0/%E9%85%B5%E6%AF%8D%E8%B7%AF%E5%BE%84%E5%9B%BE.png" class="img-responsive">
 +
                                    <h5 style="text-align:center"> New route map S.Cerevisiae</h5>
 +
                                </div>
 +
                            </div>
 +
                           
 +
                            <h4>
 +
                                <br> Before the implementation of the formal experiment, we need to model it to analyze the impact
 +
                                of the introduction of new routes on the original metabolic flow, especially the two intermediates
 +
                                of DHAP or G3P. Specifically, we care about the following two issues:
 +
                                <br> 1. Has the DHAP or G3P's carbon flow improved after the introduction of new metabolic pathways?
 +
                                Is it compared to the previous increase in production?
 +
                                <br> 2. The introduction of new pathways after the entire metabolic pathway is stable and robust.
 +
                                How is it?
 +
                                <br> In order to answer these two questions, we established a carbon metabolic flow model.
 +
                            </h4>
 +
                            <h4>The overall workflow is as follows:</h4>
 +
                            <h2 style="text-align:center">Parameter estimation</h2>
 +
                            <h4>There are many parameters to be determined in the model. Most of these kinetic parameters can
 +
                                be found in the literature or in the database, but at the same time, there are some kinetic
 +
                                parameters of the enzyme we are looking for. Its organic matter, or the temperature and ph
 +
                                of the enzyme are different. Therefore, we need to re-estimate this part of the parameters.
 +
                                <br>
 +
                                <br> In the process data link, we cited the method using the data point weighting of University
 +
                                of Manchester in year 2016 . The weighting of the samples is as follows:
 +
                                <br> 1. When the sample PH is the same, the sample is weighted by 4 .2 when they are close. 1
 +
                                when they differ much.
 +
                                <br> 2. When the sample temperature is the same, the pH is the same.
 +
                                <br> 3. When the samples are from the same species , the weight of the sample is 4.When they
 +
                                are the non-identical species and are the prokaryotes,or the corresponding species mutated
 +
                                to the corresponding species, the weight is 2. When they are the non-identical species and
 +
                                are the eukaryotes, the weight is 1.
 +
                                <br> 4. Try to delete the missing data. If there are some essential samples of the temperature
 +
                                and PH missing, then the corresponding weight is 2.
 +
                                <br>
 +
                                <br> 1.kernel density estimate 2. Gaussian mixed model.
 +
                                <br>
 +
                                <br> The fourth point reflects our point of view of Bayesian. In the absence of prior knowledge
 +
                                of the case, we take as much as possible the weight of neutrality.
 +
                                <br> Based on the points above, we get a new parametric vector after weighting.In our model,
 +
                                we do the fitting of the probability density according to the two methods of the parameter
 +
                                vector: 1.kernel density estimatebsp;2. Gaussian mixed model.
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/3/32/Model-4.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
 +
                                <br>
 +
                            </h4>
 +
                            <br>
 +
                            <br>
 +
                            <br>
 +
                            <h2 style="text-align:center">The basic workflow of parameter estimation:</h2>
 +
                            <h4>The Gaussian mixture model can be approximated to any real probability distribution in theory.
 +
                                The EM algorithm is used to estimate the parameters required for the model. And we use the
 +
                                Gaussian mixture model to estimate the probability density of the possible distribution of
 +
                                parameters.
  
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/f/f7/Model-5.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/b/b2/Model-6.1.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
  
                    <div id="PATHWAY" style="padding-top:50px;margin-top:-50px;">
+
 
                        <h2 style="text-align:center">PATHWAY</h2>
+
 
                        <h4>The carbon flow rate of the glycerol metabolic pathway is low. In order to solve the problem, we
+
                                <br> After making the probability distribution, we select Bin randomly, which meet the conditions
                            need reconstruction and optimization of the original metabolic pathway.
+
                                of width = len / 10.And we select the most possible bin based on the CDF, and estimate the
 +
                                corresponding parameters when the bin reach average value.
 +
 
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/e/e5/Model-6.2.png" class="img-responsive" width="20%" height="20%">
 +
                                </div>
 +
 
 +
 
 +
 
 +
                                <br> Finally, we get the estimated parameter values, as well as the corresponding parameters
 +
                                of the original PDF. The specific form and parameter values are as follows:
 +
                                <br> The reaction path of the original pathway is Gly to Gly-3-p and then to DAHP
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/d/da/Model-7.png" class="img-responsive" width="40%" height="40%">
 +
                                </div>
 +
 
 +
 
 +
                                <br> The original pathway belongs to the reaction of a single channel, and there is a random
 +
                                bibi reaction and an irreversible Mickey equation reaction. The reaction involves two enzymes
 +
                                paticipating - glpk and glpD. We assume that the reaction concentration of these two enzymes
 +
                                is 0.01 mM, assuming that the initial [Gly] concentration is 10 mM, the initial concentration
 +
                                of ATP 10 mM, Gly-3 The concentration of -p 0 mM and the concentration of DHAP 0 mM at the
 +
                                same time.
 +
                                <br>
 +
                                <br> In this reaction, we make the following assumptions about our model:
 +
                                <br> 1. The ATP of the E.coil system is given externally completely, assuming that the culture
 +
                                conditions given externally are sufficient and ATP maintains a stable constant.
 +
                                <br> 2. Assume that the substrate involved in the reaction does not participate in other reactions.
 +
                                <br> In order to determine the yield of the target product, we chose to observe the efficiency
 +
                                of the DHAP yield estimation system in view of the lack of basic Deas2 enzyme data.
 +
                                <br>
 +
                            </h4>
 +
 
 +
                            <div align="center">
 +
                                <img src="https://static.igem.org/mediawiki/2017/9/95/Model-8.png" class="img-responsive" width="60%" height="60%">
 +
                            </div>
 +
 
 +
 
 +
                            <h4>
 +
                                <br> We can observe that the DHAP stops growing close to 50 minutes.
 +
                                <br>
 +
                                <br> Then, we need to test the carbon pathway through the modified pathway, And add a metabolic
 +
                                pathway enzyme-catalyzed by GlyDH enzyme and DAK in the original path, while the need for
 +
                                NOX enzyme and CAT enzyme from the role of NAD + supplement, resulting in DHA, and finally
 +
                                Phosphorylation produces DHAP.
 +
                                <br> metabolic flow after the transformation of the reaction model. According to the actual situation
 +
                                of the reaction, we make the following assumptions:
 +
                                <br> 1. In the reaction , due to the process of hydrogen peroxide to the production of O2, that
 +
                                is, the process of generating acceptor, is faster, we will regard the reaction of NOX enzyme
 +
                                NADH catalytic as an ordinary Michael's equation, rather than ordered sequence reaction.
 +
                                <br> 2. Random pairs of sequence reactions and ordered sequence reaction equations are identical.
 +
                                So we substrate which is identified as the [A] substrate depending on the integrity of the
 +
                                data.
 +
                                <br>
 +
                            </h4>
 +
                            <h4 style="text-align:center">Metabolic pathways after transformation</h4>
 +
                            <div align="center">
 +
                                <img src="https://static.igem.org/mediawiki/2017/3/33/Model-10.png" class="img-responsive" width="60%" height="60%">
 +
                            </div>
 +
 
 +
 
 +
                            <h4>
 +
                                <br> We can see that the rate of DHAP is faster after changing the metabolic pathway, which means
 +
                                that the higher the output per unit time after being put in use, the sooner the reaction
 +
                                is done. Compared to the pre-improved pathway ,the reaction finishes roughly five minutes
 +
                                ahead.
 +
                                <br> Sensitive analysis
 +
                                <br> In the previous pathway study, we noted that the Kcat values of glpK and GlyDH enzymes are
 +
                                unknown (we do not have a large deviation in the absence of a sample expressed in E.coil).
 +
                                <br> The Kcat value of the reaction of propanal is the Kcat value of the reaction of Gly and
 +
                                GlyDH. It is also assumed that the K63 ratio of the two enzymes is 2: 1.
 +
                                <br> We often use Kcat / Km to describe the catalytic efficiency of different enzymes for the
 +
                                same substrate, and as a result of our experiments, GlyDH exhibited higher catalytic efficiency
 +
                                than glpK. Thus we assume that the GlyDH enzyme and the glpK enzyme satisfy the following
 +
                                relationship:
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/5/50/Model-11.1.png" class="img-responsive" width="30%" height="30%">
 +
                                </div>
 +
 
 +
 
 +
                                <br> GlyDH enzyme activity and the Km value for gly and the Km value of the glpk enzyme to gly
 +
                                have been known in previous studies. Next we adjust the alpha coefficient to study the effect
 +
                                of different ratios on the overall metabolic flow.
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/9/9c/Model-11.2.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
 +
 
 +
                            </h4>
 
                             <br>
 
                             <br>
                             <br> RE-Construction:We designed the GDC (GlyDH-DAK-Ceas2) pathway to produce acrylic acid from glycerol.
+
                             <h4 style="text-align:center">KATA Sensitivity Test before Modification</h4>
                             In this pathway, GlyDH(Glycerol dehydrogenase) can efficiently convert Glycerol into DHA(1,3-Dihydroxyacetone).
+
                             <div align="center">
                            Then DAK (Dihydroxyacetone kinase) converts DHA into DHAP. Finally, ceaS2 converts DHAP into
+
                                <img src="https://static.igem.org/mediawiki/2017/8/89/Model-12.1.png" class="img-responsive" width="60%" height="60%">
                            acrylic acid. In addition, because GlyDH depends on NAD+, we added two reduction models, NOX
+
                             </div>
                            (NADH dehydrogenase )and CAT(Catalase), to the pathway, with the purpose of providing the required
+
 
                            reduction force for GLY DH through the two layers of substrate level cycle. At last, we construct
+
 
                            a new pathway for acrylic acid synthesis- GNCDC(GlyDH-NOX-CAT-DAK-ceaS2)
+
                             <br> The genes of GlyDH and DAK were constructed on two MCS (multiple cloning sites) on the backbone
+
                            of pCDFDuet-1 plasmid. NOX and CAT were constructed on two MCSs on the backbone of pETDuet-1
+
                            plasmid. ) (质粒图注释)
+
 
                             <br>
 
                             <br>
                        </h4>
+
                            <h4 style="text-align:center">KATA Sensitivity Test after Modification</h4>
                        【E.coli新路径图(含旧路径部分),区别主要途径和还原力模块+质粒图】
+
                            <div align="center">
                    </div>
+
                                <img src="https://static.igem.org/mediawiki/2017/e/e9/Model-12.2.png" class="img-responsive" width="60%" height="60%">
 +
                            </div>
  
                    <div id="SYSTEM" style="padding-top:50px;margin-top:-50px;">
+
 
                        <h2 style="text-align:center">SYSTEM</h2>
+
                            <h4>
                        <h4>The choice of the chassis organism is vital to the efficiency of the cell factory. Acrylic acid may
+
                                <br> We show the highest ratio (1000) and the lowest ratio (0.001) in yellow and blue lines respectively.
                            do damage to the cell membrane. So we need to choose an organism which has high tolerance of
+
                                The pre-transformation pathway is most sensitive to the change of Kcat in glpK enzyme, and
                            acrylic acid. Escherichia coli and Saccharomyces cerevisiae are two model organisms which can
+
                                the metabolic pathway of the target substrate is transformed with the change of α Rate is
                            be easily modified in the prokaryotic and eukaryotic.
+
                                always higher than the pre-transformation pathway, even when the glpK Kcat / Km value is
                            <br> Therefore, in the choice of the chassis organism, we tested two organisms, E. coli MG1655 and
+
                                100 times the GlyDH, the reason may be DAK enzyme catalytic efficiency’s higher than glpD.
                            Saccharomyces cerevisiae BY4741. BY4741 has a great ability to metabolize glycerol. According
+
                                <br> As we can see, the previous reaction is dependent on ATP, and in the previous hypothesis,
                            to GAACF1.0, we used the YCPlac33 plasmid with URA defect screening marker as the backbone and
+
                                we make ATP stable in the constant .In order to analyze the ATP concentration changes on
                            used the pTDH3 constitutive promoter and tPFK1 constitutive terminator to construct ceaS2 plasmid.
+
                                the impact of glycerol conversion, we add a Standard deviation of 0.05, mean of the normal
                            <br> 【S.C图+路径图+质粒图】 We confirmed the proposal can make S.cerevisiae produce acrylic acid, but the
+
                                distribution of variables to disturb the timing of the concentration of ATP in ODE.
                            yield is low, so we decided to optimize it.
+
                                <br> For the sake of us to observe the significant results, we assume that the initial concentration
                            <br> First, according to GNCDC(GlyDH-NOX-CAT-DAK-ceaS2) in E.coli, we added NOX to the pathway(the
+
                                of ATP is 0 and is always greater than zero.
                            CAT enzyme is active in S.cerevisiae). So we designed a pathway, GNDC(GlyDH-NOX -DAK-ceaS2),
+
                                <br> And the change curve of the concentration in 60min is shown below:
                            for S.cerevisiae.
+
                             </h4>
                            <br> 【新途径+质粒图】 The genes of GlyDH and DAK were constructed on the backbone of YCPlac33 plasmid with
+
                            URA marker. We used the ADH1 promoter and TGPD1 terminator for GlyDH, the PGK1 promoter and the
+
                            tPFK1 terminator for DAK. NOX and ceaS2 were constructed on the backbone of the other YCPlac33
+
                            plasmid. We replaced URA marker with LEU marker to screen for two plasmids easily. We used the
+
                            TEF2 promoter and tRPS2 terminator for GlyDH, the same promoter and terminator as the original
+
                             pathway for ceaS2. (质粒图注释)
+
 
                             <br>
 
                             <br>
                        </h4>
+
                            <br>
                    </div>
+
                            <h4 style="text-align:center">Before transformation</h4>
  
                    <div id="PRODUCTION" style="padding-top:50px;margin-top:-50px;">
+
 
                        <h2 style="text-align:center">PRODUCTION</h2>
+
                            <div align="center">
                        <h4>To make the engineering bacteria produce acrylic acid, it takes two stages. First, bacteria must
+
                                <img src="https://static.igem.org/mediawiki/2017/9/91/Model-14.1.png" class="img-responsive" width="60%" height="60%">
                            grow and express the enzyme, then use carbon source to synthesize acrylic acid. To screen for
+
                             </div>
                            engineering bacteria, it is a waste of time and reagents to use the traditional fermentation
+
                            method. We used whole cell catalysis to carry out the reaction for acrylic acid production
+
                             <br> After the enzyme is expressed, the bacteria solution will be centrifuged and concentrated 10
+
                            times with buffer before the reaction. Therefore, we optimized the reaction process, selected
+
                            the carbon source, Buffer, temperature, pH, reaction time and other conditions to optimize the
+
                            production process of the cell factory.
+
 
                             <br>
 
                             <br>
                        </h4>
+
                            <h4 style="text-align:center">After trransformation</h4>
                        【筛选条件组合表,分为E.coli和S.C的】
+
 
                        <br>
+
                            <div align="center">
                        <h3>PS. We also made Hardware
+
                                <img src="https://static.igem.org/mediawiki/2017/d/d8/Model-14.2.png" class="img-responsive" width="60%" height="60%">
                            <a href="https://2017.igem.org/Team:NPU-China/Hardware">(Click Here)</a> to simulate the industrial production process of acrylic acid!</h3>
+
                            </div>
 +
                            <h4>
 +
                                <br> We found that the random change of ATP concentration had a significant effect on the pathway
 +
                                after transformation, and the rate of DHAP synthesis was lower than that before transformation.
 +
                                <br> But when we adjust the standard deviation of the normal distribution random variable to
 +
                                0.05, the result is shown below.
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/f/f2/Model-15.1.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
 +
 
 +
                                <div align="center">
 +
                                    <img src="https://static.igem.org/mediawiki/2017/c/ce/Model-15.2.png" class="img-responsive" width="60%" height="60%">
 +
                                </div>
 +
 
 +
 
 +
                                <br> Thus, we found that even if ATP had a greater perturbation, the overall level was relatively
 +
                                high in 0-60 min compared to the previous standard deviation of 0.02. While the transformation
 +
                                of the metabolic pathway also reflects a more stable curve of change. At this point the concentration
 +
                                of DHAP is not significantly affected by changes in ATP concentration.
 +
                                <br> Thus, in actual production, we only need to keep the ATP concentration at a slightly higher
 +
                                level, not only to ensure the production of the target product, but to increase the stability
 +
                                of the system as well.
 +
                                <br>
 +
                            </h4>
 +
 
 +
                        </div>
 +
                        <div class="tab-pane fade" id="service-two">
 +
 
 +
                            <h3 style="text-align: center;">Abstract</h3>
 +
                            <br>
 +
                            <h4>Engineering for the desired enzyme catalytic properties plays an important role in the biosynthesis
 +
                                of bulk chemicals and natural products. However, it is a time-consuming task to improve enzyme
 +
                                catalysis by traditional random mutagenesis. And the utility of rational design based on
 +
                                protein structure often was limited by the lack of protein structure for target enzymes and
 +
                                professional backgrounds of bioinformatics.
 +
                                <br>
 +
                                <br>
 +
                            </h4>
 +
                            <h3 style="text-align: center;">Introduction</h3>
 +
                            <h4>
 +
                                <br> Enzyme engineering has been extensively used to optimize biocatalysts in industrial biotechnology
 +
                                since most of enzymes in nature prefer to organisms adaptation but not industrial production
 +
                                (Alvizo, et al., 2014; Ma, et al., 2009; Savile, et al., 2010). Traditionally, optimized
 +
                                enzymes were obtained by random site-directed or saturated mutagenesis such as Error Prone
 +
                                PCR, DNA shuffling and so on (Kabumoto, et al., 2009; Qi, et al., 2009; Reetz and Carballeira,
 +
                                2007; Yep, et al., 2008). Due to the immense possibility of sequence mutation at amino acids
 +
                                level, it is a time-consuming and low efficiency task to obtain a high efficient biocatalyst
 +
                                by random mutation.
 +
                                <br> With the availability of an increasing number of protein structural and biochemical data,
 +
                                rational design of enzymatic mutation has become more and more popular (Bloom, et al., 2005;
 +
                                Chica, et al., 2005; Kiss, et al., 2013; Li, et al., 2012; Steiner and Schwab, 2012). Many
 +
                                strategies have been used to obtain evolutionary information, catalytic sites and substrate
 +
                                channels by integrating sequence and structural features of enzymes. Previous studies have
 +
                                developed many effective computational tools for enzyme engineering, such as the enzyme design
 +
                                software Rosetta (Leaver-Fay, et al., 2011) and stability design software Foldx (Van, et
 +
                                al., 2011) and so on (Table S2). However, most of them only focus on one feature, like the
 +
                                thermo-stability based on the known PDB structure, and often request professional backgrounds
 +
                                in protein structure, biochemistry, bioinformatics and so on.
 +
                                <br>
 +
                                <br>
 +
                            </h4>
 +
                            <h3 style="text-align: center;">What is AEMD?</h3>
 +
                            <h4>
 +
                                <br> AEMD is a web-based pipeline, which integrates several approaches together for enzyme stability,
 +
                                selectivity and activity engineering. This pipeline can generate comprehensive reports, which
 +
                                include the recommended mutation for improving enzyme catalytic property. Specifically, users
 +
                                can get the recommended mutation only inputting sequence information of target enzymes, which
 +
                                is very useful in the situation without professional knowledge and the known protein structure,
 +
                                since AEMD contains a functional module that can automatically predict structure of the target
 +
                                enzyme based on the known structures in Protein Data Bank (PDB).
 +
                                <br> AEMD-Web provides a web interface, enabling users to conveniently predict mutants which
 +
                                could improve the stability, selectivity and activity of enzymes. Users can obtain the suggestion
 +
                                of mutations for almost all enzyme even without protein structure. In the future, we will
 +
                                construct a comprehensive enzymatic mutant database and integrate new computing technology,
 +
                                to improve the efficiency of enzyme engineering in industrial biotechnology.
 +
                                <br>Fig.1 Workflow of the Stability analysis (A), Selectivity analysis (B) and Activity analysis
 +
                                (C). The blue color rectangle blocks represent the inputs of sequence or PDB file, and the
 +
                                output of recommended mutation sites. The green and gray color rectangle blocks represent
 +
                                the evolution- and energy-based analysis process, respectively. The yellow color diamond
 +
                                blocks represent the use of other softwares and approaches. The processes were shown in Supplementary
 +
                                methods 【click here】in more detail. AEMD is freely available for non-commercial use at www.AEMD.tech:8181.
 +
                                <br>
 +
                                <br>
 +
                            </h4>
 +
                            <h3 style="text-align: center;">Process</h3>
 +
                            <h4>
 +
                                <br> AEMD is a web-based pipeline, which integrates several approaches together for enzyme stability,
 +
                                selectivity and activity engineering. This pipeline can generate comprehensive reports, which
 +
                                include the recommended mutation for improving enzyme catalytic property. Specifically, users
 +
                                can get the recommended mutation only inputting sequence information of target enzymes, which
 +
                                is very useful in the situation without professional knowledge and the known protein structure,
 +
                                since AEMD contains a functional module that can automatically predict structure of the target
 +
                                enzyme based on the known structures in Protein Data Bank (PDB).
 +
                                <br> AEMD-Web provides a web interface, enabling users to conveniently predict mutants which
 +
                                could improve the stability, selectivity and activity of enzymes. Users can obtain the suggestion
 +
                                of mutations for almost all enzyme even without protein structure. In the future, we will
 +
                                construct a comprehensive enzymatic mutant database and integrate new computing technology,
 +
                                to improve the efficiency of enzyme engineering in industrial biotechnology.
 +
                                <br>Fig.1 Workflow of the Stability analysis (A), Selectivity analysis (B) and Activity analysis
 +
                                (C). The blue color rectangle blocks represent the inputs of sequence or PDB file, and the
 +
                                output of recommended mutation sites. The green and gray color rectangle blocks represent
 +
                                the evolution- and energy-based analysis process, respectively. The yellow color diamond
 +
                                blocks represent the use of other softwares and approaches. The processes were shown in Supplementary
 +
                                methods 【click here】in more detail. AEMD is freely available for non-commercial use at www.AEMD.tech:8181.
 +
                                <br>
 +
                                <br>
 +
                            </h4>
 +
                        </div>
 +
 
 
                     </div>
 
                     </div>
  
                </div>
 
  
 +
 +
                </div>
 
             </div>
 
             </div>
 
             <!-- Blog Post Row -->
 
             <!-- Blog Post Row -->

Revision as of 20:04, 31 October 2017

Introduction

This year our project is the introduction of acrylic synthetic routes in Escherichia coli or Saccharomyces cerevisiae to produce acrylic acid.


Primitive metabolic path map in E.Coli
Primitive metabolic path map in S.Cerevisiae


We have a rational new design and transformation of the core enzyme ceaS2, at the same time, we also want to be optimized to improve the acrylic acid production in the metabolic flow.
We know that for Escherichia coli, the carbon flow rate of its original glycerol metabolic pathway may not be sufficient, and if the new glycerol metabolic pathway can be used to increase the carbon flow of DHAP or G3P, the substrate of the core enzyme ceaS2 can be increased Concentration to increase acrylic acid production.
Therefore, through the literature review, we found two enzymes which can achieve efficient conversion of glycerol to generate DHAP the same way.
In our new approach, Glycerol dehydrogenase (Gly DH) is capable of efficiently converting glycerol to 1,3-Dihydroxyacetone (DHA) and then phosphorylates DHA to DHAP via Dihydroxyacetone kinase (DAK).


New route map in E.Coli
New route map S.Cerevisiae


Before the implementation of the formal experiment, we need to model it to analyze the impact of the introduction of new routes on the original metabolic flow, especially the two intermediates of DHAP or G3P. Specifically, we care about the following two issues:
1. Has the DHAP or G3P's carbon flow improved after the introduction of new metabolic pathways? Is it compared to the previous increase in production?
2. The introduction of new pathways after the entire metabolic pathway is stable and robust. How is it?
In order to answer these two questions, we established a carbon metabolic flow model.

The overall workflow is as follows:

Parameter estimation

There are many parameters to be determined in the model. Most of these kinetic parameters can be found in the literature or in the database, but at the same time, there are some kinetic parameters of the enzyme we are looking for. Its organic matter, or the temperature and ph of the enzyme are different. Therefore, we need to re-estimate this part of the parameters.

In the process data link, we cited the method using the data point weighting of University of Manchester in year 2016 . The weighting of the samples is as follows:
1. When the sample PH is the same, the sample is weighted by 4 .2 when they are close. 1 when they differ much.
2. When the sample temperature is the same, the pH is the same.
3. When the samples are from the same species , the weight of the sample is 4.When they are the non-identical species and are the prokaryotes,or the corresponding species mutated to the corresponding species, the weight is 2. When they are the non-identical species and are the eukaryotes, the weight is 1.
4. Try to delete the missing data. If there are some essential samples of the temperature and PH missing, then the corresponding weight is 2.

1.kernel density estimate 2. Gaussian mixed model.

The fourth point reflects our point of view of Bayesian. In the absence of prior knowledge of the case, we take as much as possible the weight of neutrality.
Based on the points above, we get a new parametric vector after weighting.In our model, we do the fitting of the probability density according to the two methods of the parameter vector: 1.kernel density estimatebsp;2. Gaussian mixed model.




The basic workflow of parameter estimation:

The Gaussian mixture model can be approximated to any real probability distribution in theory. The EM algorithm is used to estimate the parameters required for the model. And we use the Gaussian mixture model to estimate the probability density of the possible distribution of parameters.

After making the probability distribution, we select Bin randomly, which meet the conditions of width = len / 10.And we select the most possible bin based on the CDF, and estimate the corresponding parameters when the bin reach average value.

Finally, we get the estimated parameter values, as well as the corresponding parameters of the original PDF. The specific form and parameter values are as follows:
The reaction path of the original pathway is Gly to Gly-3-p and then to DAHP

The original pathway belongs to the reaction of a single channel, and there is a random bibi reaction and an irreversible Mickey equation reaction. The reaction involves two enzymes paticipating - glpk and glpD. We assume that the reaction concentration of these two enzymes is 0.01 mM, assuming that the initial [Gly] concentration is 10 mM, the initial concentration of ATP 10 mM, Gly-3 The concentration of -p 0 mM and the concentration of DHAP 0 mM at the same time.

In this reaction, we make the following assumptions about our model:
1. The ATP of the E.coil system is given externally completely, assuming that the culture conditions given externally are sufficient and ATP maintains a stable constant.
2. Assume that the substrate involved in the reaction does not participate in other reactions.
In order to determine the yield of the target product, we chose to observe the efficiency of the DHAP yield estimation system in view of the lack of basic Deas2 enzyme data.


We can observe that the DHAP stops growing close to 50 minutes.

Then, we need to test the carbon pathway through the modified pathway, And add a metabolic pathway enzyme-catalyzed by GlyDH enzyme and DAK in the original path, while the need for NOX enzyme and CAT enzyme from the role of NAD + supplement, resulting in DHA, and finally Phosphorylation produces DHAP.
metabolic flow after the transformation of the reaction model. According to the actual situation of the reaction, we make the following assumptions:
1. In the reaction , due to the process of hydrogen peroxide to the production of O2, that is, the process of generating acceptor, is faster, we will regard the reaction of NOX enzyme NADH catalytic as an ordinary Michael's equation, rather than ordered sequence reaction.
2. Random pairs of sequence reactions and ordered sequence reaction equations are identical. So we substrate which is identified as the [A] substrate depending on the integrity of the data.

Metabolic pathways after transformation


We can see that the rate of DHAP is faster after changing the metabolic pathway, which means that the higher the output per unit time after being put in use, the sooner the reaction is done. Compared to the pre-improved pathway ,the reaction finishes roughly five minutes ahead.
Sensitive analysis
In the previous pathway study, we noted that the Kcat values of glpK and GlyDH enzymes are unknown (we do not have a large deviation in the absence of a sample expressed in E.coil).
The Kcat value of the reaction of propanal is the Kcat value of the reaction of Gly and GlyDH. It is also assumed that the K63 ratio of the two enzymes is 2: 1.
We often use Kcat / Km to describe the catalytic efficiency of different enzymes for the same substrate, and as a result of our experiments, GlyDH exhibited higher catalytic efficiency than glpK. Thus we assume that the GlyDH enzyme and the glpK enzyme satisfy the following relationship:

GlyDH enzyme activity and the Km value for gly and the Km value of the glpk enzyme to gly have been known in previous studies. Next we adjust the alpha coefficient to study the effect of different ratios on the overall metabolic flow.


KATA Sensitivity Test before Modification


KATA Sensitivity Test after Modification


We show the highest ratio (1000) and the lowest ratio (0.001) in yellow and blue lines respectively. The pre-transformation pathway is most sensitive to the change of Kcat in glpK enzyme, and the metabolic pathway of the target substrate is transformed with the change of α Rate is always higher than the pre-transformation pathway, even when the glpK Kcat / Km value is 100 times the GlyDH, the reason may be DAK enzyme catalytic efficiency’s higher than glpD.
As we can see, the previous reaction is dependent on ATP, and in the previous hypothesis, we make ATP stable in the constant .In order to analyze the ATP concentration changes on the impact of glycerol conversion, we add a Standard deviation of 0.05, mean of the normal distribution of variables to disturb the timing of the concentration of ATP in ODE.
For the sake of us to observe the significant results, we assume that the initial concentration of ATP is 0 and is always greater than zero.
And the change curve of the concentration in 60min is shown below:



Before transformation


After trransformation


We found that the random change of ATP concentration had a significant effect on the pathway after transformation, and the rate of DHAP synthesis was lower than that before transformation.
But when we adjust the standard deviation of the normal distribution random variable to 0.05, the result is shown below.

Thus, we found that even if ATP had a greater perturbation, the overall level was relatively high in 0-60 min compared to the previous standard deviation of 0.02. While the transformation of the metabolic pathway also reflects a more stable curve of change. At this point the concentration of DHAP is not significantly affected by changes in ATP concentration.
Thus, in actual production, we only need to keep the ATP concentration at a slightly higher level, not only to ensure the production of the target product, but to increase the stability of the system as well.

Abstract


Engineering for the desired enzyme catalytic properties plays an important role in the biosynthesis of bulk chemicals and natural products. However, it is a time-consuming task to improve enzyme catalysis by traditional random mutagenesis. And the utility of rational design based on protein structure often was limited by the lack of protein structure for target enzymes and professional backgrounds of bioinformatics.

Introduction


Enzyme engineering has been extensively used to optimize biocatalysts in industrial biotechnology since most of enzymes in nature prefer to organisms adaptation but not industrial production (Alvizo, et al., 2014; Ma, et al., 2009; Savile, et al., 2010). Traditionally, optimized enzymes were obtained by random site-directed or saturated mutagenesis such as Error Prone PCR, DNA shuffling and so on (Kabumoto, et al., 2009; Qi, et al., 2009; Reetz and Carballeira, 2007; Yep, et al., 2008). Due to the immense possibility of sequence mutation at amino acids level, it is a time-consuming and low efficiency task to obtain a high efficient biocatalyst by random mutation.
With the availability of an increasing number of protein structural and biochemical data, rational design of enzymatic mutation has become more and more popular (Bloom, et al., 2005; Chica, et al., 2005; Kiss, et al., 2013; Li, et al., 2012; Steiner and Schwab, 2012). Many strategies have been used to obtain evolutionary information, catalytic sites and substrate channels by integrating sequence and structural features of enzymes. Previous studies have developed many effective computational tools for enzyme engineering, such as the enzyme design software Rosetta (Leaver-Fay, et al., 2011) and stability design software Foldx (Van, et al., 2011) and so on (Table S2). However, most of them only focus on one feature, like the thermo-stability based on the known PDB structure, and often request professional backgrounds in protein structure, biochemistry, bioinformatics and so on.

What is AEMD?


AEMD is a web-based pipeline, which integrates several approaches together for enzyme stability, selectivity and activity engineering. This pipeline can generate comprehensive reports, which include the recommended mutation for improving enzyme catalytic property. Specifically, users can get the recommended mutation only inputting sequence information of target enzymes, which is very useful in the situation without professional knowledge and the known protein structure, since AEMD contains a functional module that can automatically predict structure of the target enzyme based on the known structures in Protein Data Bank (PDB).
AEMD-Web provides a web interface, enabling users to conveniently predict mutants which could improve the stability, selectivity and activity of enzymes. Users can obtain the suggestion of mutations for almost all enzyme even without protein structure. In the future, we will construct a comprehensive enzymatic mutant database and integrate new computing technology, to improve the efficiency of enzyme engineering in industrial biotechnology.
Fig.1 Workflow of the Stability analysis (A), Selectivity analysis (B) and Activity analysis (C). The blue color rectangle blocks represent the inputs of sequence or PDB file, and the output of recommended mutation sites. The green and gray color rectangle blocks represent the evolution- and energy-based analysis process, respectively. The yellow color diamond blocks represent the use of other softwares and approaches. The processes were shown in Supplementary methods 【click here】in more detail. AEMD is freely available for non-commercial use at www.AEMD.tech:8181.

Process


AEMD is a web-based pipeline, which integrates several approaches together for enzyme stability, selectivity and activity engineering. This pipeline can generate comprehensive reports, which include the recommended mutation for improving enzyme catalytic property. Specifically, users can get the recommended mutation only inputting sequence information of target enzymes, which is very useful in the situation without professional knowledge and the known protein structure, since AEMD contains a functional module that can automatically predict structure of the target enzyme based on the known structures in Protein Data Bank (PDB).
AEMD-Web provides a web interface, enabling users to conveniently predict mutants which could improve the stability, selectivity and activity of enzymes. Users can obtain the suggestion of mutations for almost all enzyme even without protein structure. In the future, we will construct a comprehensive enzymatic mutant database and integrate new computing technology, to improve the efficiency of enzyme engineering in industrial biotechnology.
Fig.1 Workflow of the Stability analysis (A), Selectivity analysis (B) and Activity analysis (C). The blue color rectangle blocks represent the inputs of sequence or PDB file, and the output of recommended mutation sites. The green and gray color rectangle blocks represent the evolution- and energy-based analysis process, respectively. The yellow color diamond blocks represent the use of other softwares and approaches. The processes were shown in Supplementary methods 【click here】in more detail. AEMD is freely available for non-commercial use at www.AEMD.tech:8181.