Difference between revisions of "Team:NPU-China/Hardware"

 
(22 intermediate revisions by 3 users not shown)
Line 63: Line 63:
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li class="dropdown active">
+
                     <li class="dropdown">
 
                         <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 
                         <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 
                             <b class="caret"></b>
 
                             <b class="caret"></b>
Line 101: Line 101:
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li>
+
                     <li class="active">
 
                         <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 
                         <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 
                     </li>
 
                     </li>
Line 147: Line 147:
 
     <!-- Page Content -->
 
     <!-- Page Content -->
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/b/bc/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fbackground.jpg">
+
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/e/e1/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fhardware.jpg">
 
         <div class="container" style="padding-top:70px">
 
         <div class="container" style="padding-top:70px">
 
             <div class="row">
 
             <div class="row">
Line 153: Line 153:
  
  
 +
                    <h4>The theme of our project this year is Manufacture, so we have been trying to contrive a series of hardwares
 +
                        to model the industrial production and enhance our method. However, the gap does exist between the
 +
                        reality and our expectation.
 +
                    </h4>
  
                     <h2 style="text-align:center">Introduction</h2>
+
                     <h3 style="text-align:center">List of what we use</h3>
  
                     <h4>In the past 100 years, the rapid development of the traditional chemical industry has greatly promoted
+
                     <h4>By listing the main items we have purchased and actually used, we hope to provide some experience and
                         the improvement of people’s material living standard. Our basic necessities of life are almost inseparable
+
                         inspiration for the future teams wishing to have HW productions.
                        from the chemical synthesis goods. However, the environmental pollution and energy crises have also
+
                    </h4>
                        forced people to find new solutions. Synthetic biology instructs us that we can introduce new chemical
+
                    <div align="center">
                         reactions into biological cells, thus producing high quality chemical products in a greener way.</h4>
+
                         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/1/19/Hardware_tab.png" width="60%" height="60%">
 +
                    </div>
  
                    <h3 style="text-align:center">Then what does synthetic biology "synthesize"?</h3>
 
  
  
  
                     <h4>Biosynthesis of synthetic biology lies mainly in the biosynthesis of natural product and synthesis of
+
                     <h3 style="text-align:center">Hardware Design</h3>
                        bulk chemical. The former is represented by artemisinin, lycopene and carotene, etc., and the use
+
                        of synthetic biology method to synthesize our daily necessities of traditional chemical products
+
                        or raw materials can serve more people. Today, scientists have been able to use micro-organisms or
+
                        modified industrial enzymes to synthesize bio-plastics, bio-fuels, chemical raw materials and other
+
                        chemical products. For example, DuPont has achieved the reality of micro-algae efficiently synthesizing
+
                        isobutanol; Blupha, a well-known company to China’s iGEM teams, also has also mastered the biosynthetic
+
                        method to get PHA production. However, most of the existing products are facing the dilemma as for
+
                        the cost, making them outshined by the traditional chemical products, which in fact limits the industrial
+
                        promotion of synthetic biology.</h4>
+
  
 +
                    <h4>Our system is mainly composed of two parts: reaction part and concentrated crystallization part. The
 +
                        overall idea is that the reaction part provides the bacteria with appropriate reaction temperature,
 +
                        adequate oxygen and the prevention of bacterial precipitation. After a certain period of time, the
 +
                        reaction solution will be transferred to the concentrated crystallization part, where the concentration
 +
                        of the production is increased by the reverse osmosis membrane; the temperature of the reaction
 +
                        solution is lowered by the device, and the acrylic acid is finally crystallized.
 +
                    </h4>
  
                     <h2 style="text-align:center">Background
+
                     <h4>1)Reaction Part</h4>
                    </h2>
+
  
                     <h4>This year, we focus mainly on an important synthetic organic chemical raw material——acrylic acid. We
+
                     <h4>The reaction part mainly uses miniature DC self-priming pump, foam machine, acrylic material container,
                         hope to build efficient cell factories to achieve "all green" production of acrylic acid.</h4>
+
                        aluminum hollow cylinder (built-in heating wire) and NTC thermistor temperature sensor.
 +
                    </h4>
 +
                </div>
 +
                <div class="col-md-12" style="padding-top:30px">
 +
                    <div class="col-md-6">
 +
                         <img src="https://static.igem.org/mediawiki/2017/d/d0/%E5%B0%8F_Fig3Miniature_DC_self_-_priming_pump_.jpg" class="img-responsive">
 +
                        <h4>Fig1 Miniature DC self - priming pump</h4>
 +
                    </div>
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/4/4a/%E5%B0%8F_Hollow_cylinder_made_of_aluminum_alloy_.jpg" class="img-responsive">
 +
                        <h4>Fig2 Hollow cylinder made of aluminum alloy</h4>
 +
                    </div>
 +
                </div>
 +
                <div class="col-md-12" style="padding-top:30px">
 +
                    <div class="col-md-6">
  
 +
                        <img src="https://static.igem.org/mediawiki/2017/e/e6/%E5%B0%8F_Hontainer_made_of_Acrylics.jpg" class="img-responsive">
 +
                        <h4>Fig3 Container made of Acrylics</h4>
 +
                    </div>
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/f/f4/%E5%8F%8D%E5%BA%94%E9%83%A8%E6%BC%94%E7%A4%BA.gif" class="img-responsive"
 +
                            width="450" height="450">
 +
                        <h4>Fig4 3D design drawing Booster pump</h4>
 +
                    </div>
 +
                </div>
  
                    <h3 style="text-align:center">What is acrylic acid?</h3>
+
                <div class="col-md-12">
 +
 
 +
                    <h4>Instruction:When the system starts, the pump will continue to pump the upper reaction solution, which
 +
                        will blend a large number of air bubbles after passing through the foam machine, and then will be pumped
 +
                        back from the bottom reaction container. Furthermore, since the reaction vessel is cylindrical and
 +
                        the bubbles are continuously rising, the purpose of stirring the reaction solution and providing
 +
                        sufficient air can be achieved. Simultaneously, with the help of the temperature sensor, the system
 +
                        will be able to control heating wire inside the aluminum alloy cylinder, so that the reaction solution
 +
                        can maintain a suitable temperature range. Also, the poor thermal conductivity of acrylic materials
 +
                        is conducive to insulation. (We had considered heating the air mixed with the reaction solution at
 +
                        the foaming machine so that the reaction solution pumped back to the reaction vessel would be blended
 +
                        with a large amount of hot air, which could replace the additional heating device, but due to the
 +
                        safety and energy efficiency, this thought was given up.)
 +
                    </h4>
  
 +
                    <h4>2)Concentrated Crystallization Part</h4>
  
                     <h4>Acrylic acid is an important synthetic organic chemical raw material. Acrylic acid and its ester compounds
+
                     <h4>After the reaction has been performed for one cycle, the reaction part stops, and the reaction solution
                         are widely used in adhesives, coatings, synthetic rubber, high absorbent resin and other chemical
+
                        is thus introduced into the concentrated crystallization part and the work begins.
                         products.
+
                         <br> In this part we mainly use the acrylic material container, aluminum alloy cold source (including
 +
                        collection function), reverse osmosis membrane, pressure pump, temperature sensor, water level sensor
 +
                         and semiconductor cooling film, etc.
 
                     </h4>
 
                     </h4>
 +
                </div>
  
  
                    <h3 style="text-align:center">The existing methods of producing acrylic acid
+
                <div class="col-md-12" style="padding-top:30px">
                     </h3>
+
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/7/75/%E5%B0%8F_Hontainer_made_of_Acrylics_.jpg" class="img-responsive">
 +
                        <h4>Fig5 Container made of Acrylics</h4>
 +
                     </div>
 +
                    <div class="col-md-6">
 +
                        <img src="https://static.igem.org/mediawiki/2017/3/36/%E5%B0%8F_Cold_source_produced_by_aluminum_alloy_.jpg" class="img-responsive">
 +
                        <h4>Fig6 Cold source produced by aluminum alloy</h4>
 +
                    </div>
 +
                </div>
 +
                <div class="col-md-12" style="padding-top:30px">
 +
                    <div class="col-md-6">
  
                    <h4>According to our current research carried out about the acrylic acid synthesis method, we list them as
+
                        <img src="https://static.igem.org/mediawiki/2017/e/ec/%E5%B0%8F_Reverse_osmosis_RO_membrane_and_semiconductor.jpg" class="img-responsive">
                        follows:
+
                         <h4>Fig7 Reverse osmosis RO membrane and<br>semiconductor refrigeration chip</h4>
                        <br> 1、Traditional chemical synthesis
+
                    </div>
                        <br>图 Acrylic acid two-step oxidation
+
                    <div class="col-md-6">
                        <br> Propylene firstly reacts with oxygen to produce acrolein, whose deoxidation leads to the production
+
                         <img src="https://static.igem.org/mediawiki/2017/8/8e/%E5%B0%8F_Booster_pump.jpg" class="img-responsive">
                        of acrylic acid. The conversion rate is often up to 90%, so this method is applied in most industrial
+
                         <h4>Fig8 Booster pump</h4>
                        production of acrylic acid
+
                    </div>
                        <br> Although this practice has many advantages, but the raw material depends heavily on the traditional
+
                </div>
                        fossil energy, bringing about heavy pollution, high energy consumption and a lack of sustainability.
+
                <div class="col-md-12" style="padding-top:30px" align="center">
                        Therefore, it is imperative to develop renewable energy alternative to replace fossil energy to produce
+
                        acrylic acid in a greener way.
+
                        <br> 2、Acrylic acid semi-biosynthesis
+
                         <br> Acrylic acid semi-biosynthesis refers to the method of using micro-organisms to turn acrylonitrile,
+
                        acrylamide and other petrochemical raw materials into acrylic acid.
+
                        <br>图Acrylonitrile conversion
+
                        <br>图Acrylamide conversion
+
                        <br>Acrylic acid semi-biological method, although possesses the high yield, its raw materials acrylonitrile
+
                        and acrylamide cost even more than acrylic acid, which limits the industrialization of this method.
+
                        <br> 3.Acrylic acid complete biosynthesis
+
                         <br> Acrylic acid complete biosynthesis method refers to the direct use of saccharides and other biomass
+
                        fermentation to produce acrylic acid.
+
                        <br>图Lactate dehydration pathway
+
                        <br>图3-hydroxypropionic acid pathway
+
                        <br>图Propionic acid oxidation pathway
+
                         <br>图DMSP pathway
+
                        <br> Some shortcomings of the existing acrylic acid biosynthesis method include complexity of the synthetic
+
                        pathway , obscuration of the synthesis mechanism and low efficiency of the synthesis. How to build
+
                        a short and efficient acrylic acid biosynthetic pathway to achieve a highly efficient acrylic biosynthetic
+
                        factory is the very key to success! And this is also the entry point of our project this year.
+
                        <br>
+
                    </h4>
+
                    <h3 style="text-align:center">why we choose Glycerol as cabon source</h3>
+
  
                     <h4>Glycerol is a simple polyol compound, which presents as viscous liquid at the room temperature. It is
+
                     <img src="https://static.igem.org/mediawiki/2017/7/7f/%E6%B5%93%E7%BC%A9%E9%83%A8.gif" class="img-responsive">
                        colorless, tasteless and non-toxic. Glycerol is a by-product of the biodiesel manufacturing industry,
+
                     <h4>Fig9 3D design drawing</h4>
                        which once was a relatively scarce chemical raw material. With the rapid development of bio-diesel
+
                </div>
                        manufacturing industry in recent years, the substantial increase of glycerol production has led to
+
                        the significantly lower price. Therefore, the use of glycerol as a raw material for microbial cell
+
                        factory to produce bulk chemicals has the advantage of being cheap and green, while it also allays
+
                        the pressure of dealing with the by-products waste in the production of biodiesel. In addition, compared
+
                        with glucose, xylose and other carbohydrate substrates, glycerol metabolism can produce higher reducing
+
                        power, making it the ideal carbon source for the fermentation synthesis in cell factory.
+
                     </h4>
+
  
  
Line 245: Line 266:
  
  
 +
                <div class="col-md-12">
 +
                    <h4>Instruction:Concentrated crystallization part is relatively independent. As long as the system detects
 +
                        that the internal water level is higher than the reverse osmosis membrane, the part will start to
 +
                        work. With the pressure pump and reverse osmosis membrane, the water of the reaction solution will
 +
                        be continuously extracted, which continues to improve the concentration of acrylic acid. And the
 +
                        semiconductor cooling film will help keep the solution temperature below the melting point
 +
                        of acrylic acid, which is 286K. After many rounds of cycles, acrylic acid crystals can be collected on the
 +
                        bottom cooling source (but mixed with engineered bacteria).</h4>
 +
                    <h4> 3)System Controlling</h4>
 +
                  <div class="col-md-12" style="padding-top:10px">
  
 +
                <img src="https://static.igem.org/mediawiki/2017/c/c0/NPU-HW-%E7%94%B5%E8%B7%AF%E5%9B%BE.jpg" class="img-responsive">
  
  
 +
                    <h4>
 +
                      <br> In order to keep as much as possible in line with the actual industrial production, our device involves
 +
                        a lot of electronic components, pumps, etc., so we designed a set of controlling procedures.
 +
                        <br> For the sake of our lack of experience and staff, we chose to master the Arduino controlling board due
 +
                        to its lower difficulty, which shortened our production time. In addition, we also use 1602LCD display,
 +
                        Relay module, NTC thermistor temperature sensor, adjustable DC power supply, semiconductor cooling
 +
                        film, arduino controlling panel, water level sensor, DuPont lines, LCD1602 LCD adapter board, Motor
 +
                        drive extension and so on.
 +
                        <br> Here is our main program of the controlling system:<a href="https://static.igem.org/mediawiki/2017/4/48/Main_program_of_the_controlling_system.docx">(DOWNLOAD HERE!)</a>
 +
                    </h4>
  
  
  
 +
                    <h3 style="text-align:center">Video</h3>
 +
                    <div align="center">
 +
                        <video src="https://static.igem.org/mediawiki/2017/4/45/NPU-china-hardware.mp4" controls="controls"></video>
 +
                    </div>
 +
 +
 +
 +
                    <h3 style="text-align:center">Impression summary</h3>
 +
 +
                    <h4>Besides no relevant laboratory and company support, our staff is also scarce (the main staff is only
 +
                        one person). We had a difficult time accomplishing our initial HW work. So in this part, we hope to be able
 +
                        to provide a profound lesson.
 +
                        <br> Before the actual production and debugging, full consideration and deduction must be carried out.
 +
                        The delivery of the things bought often cost two or three days (In China, we mainly shop online,
 +
                        so the delivery time needs to be considered), and the purchase of goods may be inconsistent with what
 +
                        we wanted. Plus, the negligence of some important details may also lead to the purchase of wrong things,
 +
                        which will waste a lot of valuable time.
 +
                        <br> If you want to know more or cooperate with us, welcome to contact us.
 +
                    </h4>
  
 
                 </div>
 
                 </div>

Latest revision as of 19:27, 1 November 2017

The theme of our project this year is Manufacture, so we have been trying to contrive a series of hardwares to model the industrial production and enhance our method. However, the gap does exist between the reality and our expectation.

List of what we use

By listing the main items we have purchased and actually used, we hope to provide some experience and inspiration for the future teams wishing to have HW productions.

Hardware Design

Our system is mainly composed of two parts: reaction part and concentrated crystallization part. The overall idea is that the reaction part provides the bacteria with appropriate reaction temperature, adequate oxygen and the prevention of bacterial precipitation. After a certain period of time, the reaction solution will be transferred to the concentrated crystallization part, where the concentration of the production is increased by the reverse osmosis membrane; the temperature of the reaction solution is lowered by the device, and the acrylic acid is finally crystallized.

1)Reaction Part

The reaction part mainly uses miniature DC self-priming pump, foam machine, acrylic material container, aluminum hollow cylinder (built-in heating wire) and NTC thermistor temperature sensor.

Fig1 Miniature DC self - priming pump

Fig2 Hollow cylinder made of aluminum alloy

Fig3 Container made of Acrylics

Fig4 3D design drawing Booster pump

Instruction:When the system starts, the pump will continue to pump the upper reaction solution, which will blend a large number of air bubbles after passing through the foam machine, and then will be pumped back from the bottom reaction container. Furthermore, since the reaction vessel is cylindrical and the bubbles are continuously rising, the purpose of stirring the reaction solution and providing sufficient air can be achieved. Simultaneously, with the help of the temperature sensor, the system will be able to control heating wire inside the aluminum alloy cylinder, so that the reaction solution can maintain a suitable temperature range. Also, the poor thermal conductivity of acrylic materials is conducive to insulation. (We had considered heating the air mixed with the reaction solution at the foaming machine so that the reaction solution pumped back to the reaction vessel would be blended with a large amount of hot air, which could replace the additional heating device, but due to the safety and energy efficiency, this thought was given up.)

2)Concentrated Crystallization Part

After the reaction has been performed for one cycle, the reaction part stops, and the reaction solution is thus introduced into the concentrated crystallization part and the work begins.
In this part we mainly use the acrylic material container, aluminum alloy cold source (including collection function), reverse osmosis membrane, pressure pump, temperature sensor, water level sensor and semiconductor cooling film, etc.

Fig5 Container made of Acrylics

Fig6 Cold source produced by aluminum alloy

Fig7 Reverse osmosis RO membrane and
semiconductor refrigeration chip

Fig8 Booster pump

Fig9 3D design drawing

Instruction:Concentrated crystallization part is relatively independent. As long as the system detects that the internal water level is higher than the reverse osmosis membrane, the part will start to work. With the pressure pump and reverse osmosis membrane, the water of the reaction solution will be continuously extracted, which continues to improve the concentration of acrylic acid. And the semiconductor cooling film will help keep the solution temperature below the melting point of acrylic acid, which is 286K. After many rounds of cycles, acrylic acid crystals can be collected on the bottom cooling source (but mixed with engineered bacteria).

3)System Controlling


In order to keep as much as possible in line with the actual industrial production, our device involves a lot of electronic components, pumps, etc., so we designed a set of controlling procedures.
For the sake of our lack of experience and staff, we chose to master the Arduino controlling board due to its lower difficulty, which shortened our production time. In addition, we also use 1602LCD display, Relay module, NTC thermistor temperature sensor, adjustable DC power supply, semiconductor cooling film, arduino controlling panel, water level sensor, DuPont lines, LCD1602 LCD adapter board, Motor drive extension and so on.
Here is our main program of the controlling system:(DOWNLOAD HERE!)

Video

Impression summary

Besides no relevant laboratory and company support, our staff is also scarce (the main staff is only one person). We had a difficult time accomplishing our initial HW work. So in this part, we hope to be able to provide a profound lesson.
Before the actual production and debugging, full consideration and deduction must be carried out. The delivery of the things bought often cost two or three days (In China, we mainly shop online, so the delivery time needs to be considered), and the purchase of goods may be inconsistent with what we wanted. Plus, the negligence of some important details may also lead to the purchase of wrong things, which will waste a lot of valuable time.
If you want to know more or cooperate with us, welcome to contact us.