Difference between revisions of "Team:UNOTT/Modelling"

Line 311: Line 311:
 
<br>
 
<br>
 
<p> This system can be described as above. Where gRNA(i), Cas9, and mRNA are produced constitutively with their associated rates of production kc, kg, and k0 respectively. The Cas9 and gRNA(i) will undergo an inrreversible association to form Cas9:gRNA(i) at rate kf, which in turn inhibits the production of mRNA and reduce the production of Fluorescent protein (k1). All molecules spontaneously degrade and diffuse away at their own ssociated rate. (i) will account for us having multiple gRNAs and just as many fluorescent proteins i.e. i=3 with three fluorescent proteins and subsequent set of three gRNAs.</p>
 
<p> This system can be described as above. Where gRNA(i), Cas9, and mRNA are produced constitutively with their associated rates of production kc, kg, and k0 respectively. The Cas9 and gRNA(i) will undergo an inrreversible association to form Cas9:gRNA(i) at rate kf, which in turn inhibits the production of mRNA and reduce the production of Fluorescent protein (k1). All molecules spontaneously degrade and diffuse away at their own ssociated rate. (i) will account for us having multiple gRNAs and just as many fluorescent proteins i.e. i=3 with three fluorescent proteins and subsequent set of three gRNAs.</p>
 +
<br>
 +
<p>The system can be described by the following 5 ordinary differential equations, defining how the concentration of each variable will change at any given change in time. Equations 1, 2 and 3 are derived from Farasat <i>et al.</i>(2016), which comprehensively investigated the rates at which CRISPR-Cas9 can cleave DNA targets.
 
    
 
    
  
Line 326: Line 328:
 
     <p style="text-align: center;" > This equation details the change in mRNA(i), which is very similar to the equation seen earlier when describing transciption. This is produced at a rate k0, but it is also inhibited by Cas9:grna(i), so there is a standard inhibition function which will reduce rate k0 as Cas9:gRNA(i) increases. It is also simply reduced by it's degradation and diffusion rate δdm. </p><br><br>
 
     <p style="text-align: center;" > This equation details the change in mRNA(i), which is very similar to the equation seen earlier when describing transciption. This is produced at a rate k0, but it is also inhibited by Cas9:grna(i), so there is a standard inhibition function which will reduce rate k0 as Cas9:gRNA(i) increases. It is also simply reduced by it's degradation and diffusion rate δdm. </p><br><br>
  
     $$  \color{white}{(5) {\frac{dFP,i}{dt} = k_{1} \cdot mRNA,i – δ_{dp} \cdot FP,i} $$
+
     $$  \color{white}{(5) \frac{dFP,i}{dt} = k_{1} \cdot mRNA,i – δ_{dp} \cdot FP,i} $$
 
     <p style="text-align: center;" >  This details the rate of translation and is the same as before; only changes to protein translation are increased proportionally to mRNA(i) and reduced by it's degradation and diffusion δdp. <sup> 3 </sup> : </p><br><br>
 
     <p style="text-align: center;" >  This details the rate of translation and is the same as before; only changes to protein translation are increased proportionally to mRNA(i) and reduced by it's degradation and diffusion δdp. <sup> 3 </sup> : </p><br><br>
 
      
 
      
Line 349: Line 351:
 
<br> </br>
 
<br> </br>
  
     <p style="text-align: center;" > <sup> 4 </sup> See Relationship between Max Fluorescence and Protein Concentration </p>
+
     <p style="text-align: center;" > <sup> 4 </sup> See Relationship between Max Fluorescence and Protein Concentration </p><br>
      
+
     <p>Farasat, I. and Salis, H.M., 2016. A biophysical model of CRISPR/Cas9 activity for rational design of genome editing and gene regulation. PLoS computational biology, 12(1), p.e1004724.</pP
 
     </div>
 
     </div>
 
   </div>
 
   </div>

Revision as of 01:31, 1 November 2017





MODELLING

Overview







About modeling and why iGEM Nottingham chose to do it

Constitutive Gene Expression For Protein and mRNA Expression over Time

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Max Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Are Our Constructions Random?



Showing that our constructions are random and why they are random