Difference between revisions of "Team:UNOTT/Modelling"

Line 260: Line 260:
 
<br> </br>
 
<br> </br>
  
<sup> Figure 1 </sup>
+
<p style="text-align: center;" >   Figure 1 </p>
 
$$ \color{white}{ p \underset{t_{1} }{\rightarrow} m \underset{t_{2}}{\rightarrow} p  } $$
 
$$ \color{white}{ p \underset{t_{1} }{\rightarrow} m \underset{t_{2}}{\rightarrow} p  } $$
 
<p> The equation above describes the process of which the gene undergoes transcription to produce mRNA. The mRNA carries the genetic information copied from the DNA which codes for protein. The expression of protein lead to fluorescence which is the desired output of the system. </p>
 
<p> The equation above describes the process of which the gene undergoes transcription to produce mRNA. The mRNA carries the genetic information copied from the DNA which codes for protein. The expression of protein lead to fluorescence which is the desired output of the system. </p>
  
<sup> Figure 2 </sup>
+
<p style="text-align: center;" > Figure 2 </p>
 
$$ \color{white}{ m \underset{Degradation}{\rightarrow} \oslash  } $$
 
$$ \color{white}{ m \underset{Degradation}{\rightarrow} \oslash  } $$
  
Line 273: Line 273:
 
<p>  The team applied Law of Mass Action, combining both equations for the concentration of protein and mRNA over time. This model can be described as: </p>
 
<p>  The team applied Law of Mass Action, combining both equations for the concentration of protein and mRNA over time. This model can be described as: </p>
  
<sup> Figure 3 </sup>
+
  <p style="text-align: center;" >   Figure 3 </p>
 
$$ \color{white}{  \frac{dm}{dt} = k_{1} -d _{1 } m } $$
 
$$ \color{white}{  \frac{dm}{dt} = k_{1} -d _{1 } m } $$
 
$$ \color{white}{ \frac{dp}{dt} = k_{2} \cdot  m - d_{2} \cdot p } $$
 
$$ \color{white}{ \frac{dp}{dt} = k_{2} \cdot  m - d_{2} \cdot p } $$

Revision as of 15:54, 1 November 2017





MODELLING

Overview







About modeling and why iGEM Nottingham chose to do it

Constitutive Gene Expression For Protein and mRNA Expression over Time

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Max Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP

Working out which wavelengths are required to produce a fluorescence spectra.

Are Our Constructions Random?



Showing that our constructions are random and why they are random

Conclusion

What iGEM Nottingham 2017 learnt from modelling and how modelling impacted the project.