In our project we chose to concentrate on the pathway that leads from farnesyl pyrophosphate (FPP) to crocin (figure 1). The whole pathway consists of eight genes that code for eight enzymes which might make integrating all of the genes into a plasmid and keeping the plasmid in the bacteria more difficult. Dividing the pathway and integrating the part that leads from FPP to zeaxanthin into the chromosome would both give us a stable zeaxanthin-producing E. coli strain and make performing the remaining steps easier.
Resulting Zeaxanthin Producing E. coli Strain
We created a zeaxanthin producing E. coli strain using lambda red recombineering, with the whole pathway from FPP to zeaxanthin integrated into the chromosome (figure 2), which identified by the yellow pigment. All of the steps were confirmed with PCR, gel electrophoresis and sequencing. We were able to extract and purify the expensive yellow zeaxanthin compound from our strain. After creating the zeaxanthin strain, we combined it with the plasmid containing the extended crocin pathway which gave us an E. coli strain including the entire production pathway from FPP to crocin. This will hopefully give other iGEM teams more freedom to work with and build on carotenoid pathways and make zeaxanthin more affordable to use in experiments.
Zeaxanthin has previously been expressed in E. coli by iGEM teams using a plasmid. We decided to integrate this pathway into the chromosome using the Lambda red recombineering method. This would give our project several advantages such as releasing all the plasmid origins and cassettes which would make the insertion of the crocin pathway genes or any other genes of a pathway that originates from zeaxanthin easier. It would make the strain more stable because no constant selective pressure is needed and makes it possible to introduce larger constructs and longer pathways. This also means that there is no need for the use of antibiotics which makes the purification process easier, especially if the product is later used for nutritional purposes. And of course since the first step of our zeaxanthin pathway – farnesyl pyrophosphate – is endogenous to E. coli we would be able to express the whole pathway from farnesyl pyrophosphate to crocin with no need for costly intermediates. You can read about the design and details of the zeaxanthin strain production here.
We got our zeaxanthin producing strain with the whole pathway from FPP to zeaxanthin integrated into the chromosome! All of the steps were confirmed with PCR, gel electrophoresis and sequencing. We were able to extract and purify the expensive yellow zeaxanthin compound from our strain (figure 3).
Besides observing the extracted zeaxanthin by eye we performed an absorbance measurement in the UV-Vis spectra (figure 4). Here we compared the absorbance spectra after two-phase extraction from the zeaxanthin strain, from wildtype E. coli and a zeaxanthin standard. The zeaxanthin strain had two peaks at 460 and 482 nm which were not present in wildtype E. coli. These peaks were also present in the standard, therefore we can conclude that our produced strain produces zeaxanthin. For the measurements the extracted compounds were dissolved in toluene.
Figure 7. Thin layer chromatography for zeaxanthin producing strains with and without BioBricks in the crocin pathway, standards for crocetin, crocetin dialdehyde and negative control strain (MG1665). Samples from left to right: zeaxanthin producing strain, zeaxanthin producing strain with CaCCD2 (BBa_K2423005) plasmid, zeaxanthin producing strain with a combined CaCCD2 and CsADH2946 plasmid, crocetin standard, crocetin dialdehyde standard and MG1665 (wild type E. coli).